首页> 外文OA文献 >Random observations on random observations: Sparse signal acquisition and processing
【2h】

Random observations on random observations: Sparse signal acquisition and processing

机译:随机观测中的随机观测:稀疏信号采集和处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, signal processing has come under mounting pressure to accommodate the increasingly high-dimensional raw data generated by modern sensing systems. Despite extraordinary advances in computational power, processing the signals produced in application areas such as imaging, video, remote surveillance, spectroscopy, and genomic data analysis continues to pose a tremendous challenge. Fortunately, in many cases these high-dimensional signals contain relatively little information compared to their ambient dimensionality. For example, signals can often be well-approximated as a sparse linear combination of elements from a known basis or dictionary.Traditionally, sparse models have been exploited only after acquisition, typically for tasks such as compression. Recently, however, the applications of sparsity have greatly expanded with the emergence of compressive sensing, a new approach to data acquisition that directly exploits sparsity in order to acquire analog signals more efficiently via a small set of more general, often randomized, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquist-rate samples. A common theme in this research is the use of randomness in signal acquisition, inspiring the design of hardware systems that directly implement random measurement protocols.This thesis builds on the field of compressive sensing and illustrates how sparsity can be exploited to design efficient signal processing algorithms at all stages of the information processing pipeline, with a particular focus on the manner in which randomness can be exploited to design new kinds of acquisition systems for sparse signals. Our key contributions include: (i) exploration and analysis of the appropriate properties for a sparse signal acquisition system; (ii) insight into the useful properties of random measurement schemes; (iii) analysis of an important family of algorithms for recovering sparse signals from random measurements; (iv) exploration of the impact of noise, both structured and unstructured, in the context of random measurements; and (v) algorithms that process random measurements to directly extract higher-level information or solve inference problems without resorting to full-scale signal recovery, reducing both the cost of signal acquisition and the complexity of the post-acquisition processing.
机译:近年来,信号处理承受着越来越大的压力,以适应由现代传感系统生成的越来越高维的原始数据。尽管计算能力取得了非凡的进步,但是处理诸如成像,视频,远程监控,光谱学和基因组数据分析等应用领域中产生的信号仍然构成了巨大的挑战。幸运的是,在许多情况下,这些高维信号与其环境维相比,包含的信息相对较少。例如,信号通常可以很好地近似为来自已知基础或字典的元素的稀疏线性组合。传统上,稀疏模型仅在采集后才被利用,通常用于压缩等任务。然而,近来,随着压缩感测的出现,稀疏性的应用已大大扩展,压缩感测是一种直接利用稀疏性的数据采集新方法,以便通过一小组更通用的,通常是随机的线性测量更有效地采集模拟信号。如果选择适当,则测量次数可能比奈奎斯特速率样本的次数小得多。本研究的一个共同主题是在信号采集中使用随机性,启发了直接实施随机测量协议的硬件系统的设计。在信息处理流水线的所有阶段,特别关注可以利用随机性来设计稀疏信号的新型采集系统的方式。我们的主要贡献包括:(i)探索和分析稀疏信号采集系统的适当特性; (ii)洞察随机测量方案的有用特性; (iii)分析用于从随机测量中恢复稀疏信号的重要算法家族; (iv)在随机测量的背景下探索结构性噪声和非结构性噪声的影响; (v)处理随机测量以直接提取高级信息或解决推理问题而无需求助于完整信号恢复的算法,既降低了信号采集的成本,又降低了采集后处理的复杂性。

著录项

  • 作者

    Davenport Mark A.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号