首页> 外文OA文献 >Molecular modeling of microstructure and thermodynamics of bulk and inhomogeneous polymer systems
【2h】

Molecular modeling of microstructure and thermodynamics of bulk and inhomogeneous polymer systems

机译:本体和非均相聚合物体系微观结构和热力学的分子模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modeling of thermodynamics and microstructure of polymer systems is important in their production, processing, and applications. Success in modeling these systems is contingent upon the ability of the molecular model to describe specific interactions, and capture the size and shape effects. Molecular models for polymers are divided into areas that separately focus on the bulk and inhomogeneous aspects of polymer systems.In current work, a new equation of state (EOS) based on Wertheim's thermodynamic perturbation theory (TPT1) has been developed for bulk polymer systems. Treating the polymeric fluid as a fluid mixture of associating spheres in the limit of complete association, the EOS more accurately accounts for the architecture and interactions of the polymer molecules. The EOS accurately predicts the phase behavior of bulk polymer systems over the whole range of polymer weight fractions in comparison to previous theoretical approaches, and the improvement is significant near the critical region.For inhomogeneous polymer systems, a new density functional theory (DFT) based on TPT1 has been developed. The DFT derived in terms of the segment density, offers accuracy comparable to the previous molecular density-based, simulation-dependent theories at a computational expense comparable to atomic DFTs. Comparisons with molecular simulations for the microstructure of the heteronuclear (model lipids and block copolymers) and star-like branched polymer melts near a surface, demonstrate the capability of the theory to accurately capture the effects of the polymer chain architecture, segment-segment, and segment-surface interactions.The DFT has been applied to analyze the lamellar morphologies of symmetric diblock copolymers in bulk melts and ultra-thin films confined between two surfaces. Effects of the chain length of the copolymer, incompatibility between the two blocks, surface-block interactions, and film thickness on the microstructure are investigated.Finally, the DFT has also been applied to predict the microstructure of the monolayers formed by grafted polymers (on a planar surface) and the force of interaction between two such monolayers. The theory successfully accounts for the difference in the segment sizes of the grafted polymer and the free polymer solvent. This has not been investigated with the previous theoretical approaches for grafted polymers.
机译:聚合物系统的热力学和微观结构建模在其生产,加工和应用中很重要。对这些系统进行建模的成功取决于分子模型描述特定相互作用并捕获尺寸和形状效应的能力。聚合物的分子模型分为几个区域,分别关注聚合物系统的本体和非均质方面。在当前工作中,基于Wertheim热力学摄动理论(TPT1)的本体聚合物系统已经开发了新的状态方程(EOS)。在完全缔合的极限内,将聚合物流体视为缔合球的流体混合物,EOS可以更准确地说明聚合物分子的结构和相互作用。与以前的理论方法相比,EOS可以准确预测整个聚合物重量分数范围内的本体聚合物系统的相行为,并且在关键区域附近的改进是显着的。对于非均质聚合物系统,基于新的密度泛函理论(DFT)在TPT1上已经开发。根据链段密度得出的DFT提供的精度可与以前基于分子密度的,依赖模拟的理论相提并论,而计算量却可与原子DFT媲美。通过分子模拟对表面附近的异核(模型脂质和嵌段共聚物)和星形分支聚合物熔体的微观结构进行比较,证明了该理论能够准确捕获聚合物链结构,链段和链节的影响。 DFT已用于分析块状熔体和限制在两个表面之间的超薄薄膜中的对称二嵌段共聚物的层状形态。研究了共聚物的链长,两个嵌段之间的不相容性,表面嵌段之间的相互作用以及薄膜厚度对微观结构的影响。最后,DFT还被用于预测接枝聚合物形成的单层的微观结构。平面)以及两个这样的单层之间的相互作用力。该理论成功地解释了接枝聚合物和游离聚合物溶剂的链段尺寸的差异。对于接枝聚合物,以前的理论方法尚未对此进行研究。

著录项

  • 作者

    Jain Shekhar;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号