首页> 外文OA文献 >Speakers In The Wild (SITW): The QUT Speaker Recognition System
【2h】

Speakers In The Wild (SITW): The QUT Speaker Recognition System

机译:野外演说者(SITW):QUT演说者识别系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the QUT speaker recognition system, as a competing system in the Speakers In The Wild (SITW) speaker recognition challenge. Our proposed system achieved an overall ranking of second place, in the main core-core condition evaluations of the SITW challenge. This system uses an ivector/ PLDA approach, with domain adaptation and a deep neural network (DNN) trained to provide feature statistics. The statistics are accumulated by using class posteriors from the DNN, in place of GMM component posteriors in a typical GMM UBM i-vector/PLDA system. Once the statistics have been collected, the i-vector computation is carried out as in a GMM-UBM based system. We apply domain adaptation to the extracted i-vectors to ensure robustness against dataset variability, PLDA modelling is used to capture speaker and session variability in the i-vector space, and the processed i-vectors are compared using the batch likelihood ratio. The final scores are calibrated to obtain the calibrated likelihood scores, which are then used to carry out speaker recognition and evaluate the performance of the system. Finally, we explore the practical application of our system to the core-multi condition recordings of the SITW data and propose a technique for speaker recognition in recordings with multiple speakers.
机译:本文介绍了QUT说话人识别系统,作为野外说话人(SITW)说话人识别挑战中的竞争系统。我们提出的系统在SITW挑战的主要核心-核心条件评估中总体排名第二。该系统使用ivector / PLDA方法,具有域自适应和经过训练的深层神经网络(DNN),可提供特征统计信息。通过使用DNN中的后代代替典型的GMM UBM i-vector / PLDA系统中的GMM组件后代来累积统计信息。一旦收集了统计信息,就可以像在基于GMM-UBM的系统中一样进行i向量计算。我们对提取的i向量应用域自适应,以确保针对数据集可变性的鲁棒性,PLDA建模用于捕获i向量空间中的说话人和会话可变性,并使用批处理似然比比较处理后的i向量。校准最终分数以获得校准的似然分数,然后将其用于执行说话者识别并评估系统性能。最后,我们探讨了我们的系统在SITW数据的核心多条件录音中的实际应用,并提出了一种在多说话人录音中识别说话人的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号