首页> 外文OA文献 >Traversability estimation for a planetary rover via experimental kernel learning in a Gaussian process framework
【2h】

Traversability estimation for a planetary rover via experimental kernel learning in a Gaussian process framework

机译:通过高斯过程框架中的实验核学习来估算行星漫游车的可行驶性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A critical requirement for safe autonomous navigation of a planetary rover is the ability to accurately estimate the traversability of the terrain. This work considers the problem of predicting the attitude and configuration angles of the platform from terrain representations that are often incomplete due to occlusions and sensor limitations. Using Gaussian Processes (GP) and exteroceptive data as training input, we can provide a continuous and complete representation of terrain traversability, with uncertainty in the output estimates. In this paper, we propose a novel method that focuses on exploiting the explicit correlation in vehicle attitude and configuration during operation by learning a kernel function from vehicle experience to perform GP regression. We provide an extensive experimental validation of the proposed method on a planetary rover. We show significant improvement in the accuracy of our estimation compared with results obtained using standard kernels (Squared Exponential and Neural Network), and compared to traversability estimation made over terrain models built using state-of-the-art GP techniques.
机译:行星漫游车安全自主导航的关键要求是能够准确估算地形的可穿越性。这项工作考虑了根据地形表示来预测平台的姿态和配置角度的问题,由于遮挡和传感器的限制,地形表示通常不完整。使用高斯过程(GP)和外部感受性数据作为训练输入,我们可以提供连续且完整的地形可遍历性表示,而输出估计中存在不确定性。在本文中,我们提出了一种新颖的方法,该方法着重于通过从车辆经验中学习核函数来进行GP回归,从而在操作过程中利用车辆姿态和配置中的显式相关性。我们提供了对行星漫游者所提方法的广泛实验验证。与使用标准核(平方指数和神经网络)获得的结果相比,与通过使用最新GP技术构建的地形模型进行的可穿越性估计相比,我们显示出估计准确性的显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号