首页> 外文OA文献 >Approximation of the Levy–Feller advection–dispersion process by random walk and finite difference method
【2h】

Approximation of the Levy–Feller advection–dispersion process by random walk and finite difference method

机译:用随机游动和有限差分法逼近列维-费勒对流-弥散过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present a random walk model for approximating a Levy–Feller advection–dispersion process, governed by the Levy–Feller advection–dispersion differential equation (LFADE). We show that the random walk model converges to LFADE by use of a properly scaled transition to vanishing space and time steps. We propose an explicit finite difference approximation (EFDA) for LFADE, resulting from the Grunwald–Letnikov discretization of fractional derivatives. As a result of the interpretation of the random walk model, the stability and convergence of EFDA for LFADE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
机译:在本文中,我们提出了一个随机行走模型,用于近似由Levy-Feller对流-弥散微分方程(LFADE)控制的Levy-Feller对流-弥散过程。我们表明,通过使用适当缩放的过渡到消失的空间和时间步长,随机游走模型收敛到LFADE。由于分数导数的Grunwald-Letnikov离散化,我们提出了LFADE的显式有限差分近似(EFDA)。作为对随机游走模型的解释的结果,讨论了有界域中EFDA对LFADE的稳定性和收敛性。最后,通过一些数值例子说明了本技术的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号