首页> 外文OA文献 >Fat and thin adaptive HMM filters for vision based detection of moving targets
【2h】

Fat and thin adaptive HMM filters for vision based detection of moving targets

机译:胖与瘦自适应HMM滤波器,用于基于视觉的运动目标检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.
机译:由于硬件的重量,尺寸和功率要求低,因此计算机视觉是避免无人飞行器(UAV)碰撞的一种有吸引力的解决方案。文献中出现了一种两阶段范式,用于检测和跟踪图像中的暗淡目标,包括空间预处理和时间滤波。在本文中,我们研究了基于隐马尔可夫模型(HMM)的时间过滤方法。具体来说,我们提出了一种自适应HMM滤波器,其中随着目标估计质量的提高,模型参数的方差得到了修正。具有高方差(胖滤镜)的滤波器用于目标捕获,具有低方差(薄滤镜)的滤波器用于目标跟踪。自适应过滤器已在仿真和真实数据(碰撞路线飞机的视频)中进行了测试。我们的测试结果表明,我们的自适应滤波方法改善了跟踪性能,并提供了以前的HMM滤波方法中不存在的目标航向的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号