The authors review, in a geophysical setting, several recent mathematical results on the forced–dissipative hydrostatic primitive equations with a linear equation of state in the limit of strong rotation and stratification, starting with existence and regularity (smoothness) results and describing their implications for the long-time behavior of the solution. These results are used to show how the solution of the primitive equations in a periodic box comes close to geostrophic balance as t → ∞. Then a review follows of how geostrophic balance could be extended to higher orders in the Rossby number, and it is shown that the solution of the primitive equations also satisfies a higher-order balance up to an exponentially small error. Finally, the connection between balance dynamics in the primitive equations and its global attractor, which is the only known invariant set (for a sufficiently general forcing), is discussed.
展开▼