首页> 外文OA文献 >Ranks of finite semigroups of one-dimensional cellular automata.
【2h】

Ranks of finite semigroups of one-dimensional cellular automata.

机译:一维元胞自动机的有限半群的秩。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since first introduced by John von Neumann, the notion of cellular automaton has grown into audkey concept in computer science, physics and theoretical biology. In its classical setting, a cellularudautomaton is a transformation of the set of all configurations of a regular grid such that the imageudof any particular cell of the grid is determined by a fixed local function that only depends on a fixedudfinite neighbourhood. In recent years, with the introduction of a generalised definition in terms ofudtransformations of the form τ : AG → AG (where G is any group and A is any set), the theory ofudcellular automata has been greatly enriched by its connections with group theory and topology. Inudthis paper, we begin the finite semigroup theoretic study of cellular automata by investigating theudrank (i.e. the cardinality of a smallest generating set) of the semigroup CA(Zn; A) consisting ofudall cellular automata over the cyclic group Zn and a finite set A. In particular, we determine thisudrank when n is equal to p, 2k or 2kp, for any odd prime p and k ≥ 1, and we give upper and lowerudbounds for the general case.
机译:自约翰·冯·诺伊曼(John von Neumann)首次提出以来,细胞自动机的概念已发展成为计算机科学,物理学和理论生物学中的 udkey概念。在其经典设置中,元胞 udautomaton是对规则网格的所有配置的集合的变换,这样,网格的任何特定像元的图像 ud都由仅依赖于固定 udfinite邻域的固定局部函数确定。 。近年来,随着关于τ形式 ud变换的广义定义的引入:AG→AG(其中G是任何基团,A是任何集合), udcellular自动机的理论因其联系而得到了极大的丰富。与小组理论和拓扑。在本文中,我们通过研究循环群Zn上由 udall细胞自动机组成的半群CA(Zn; A)的 udrank(即最小生成集的基数),开始了细胞自动机的有限半群理论研究。特别是,对于任何奇数素数p和k≥1,当n等于p,2k或2kp时,我们确定该 udrank,并给出一般情况的上限和下限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号