首页> 外文OA文献 >Of genes and machines : application of a combination of machine learning tools to astronomy data sets.
【2h】

Of genes and machines : application of a combination of machine learning tools to astronomy data sets.

机译:基因和机器:将机器学习工具的组合应用于天文学数据集。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We apply a combination of genetic algorithm (GA) and support vector machine (SVM) machine learningudalgorithms to solve two important problems faced by the astronomical community: star–galaxy separation andudphotometric redshift estimation of galaxies in survey catalogs. We use the GA to select the relevant features in theudfirst step, followed by optimization of SVM parameters in the second step to obtain an optimal set of parameters toudclassify or regress, in the process of which we avoid overfitting. We apply our method to star–galaxy separation inudPan-STARRS1 data. We show that our method correctly classifies 98% of objects down to iP1 = 24.5, with audcompleteness (or true positive rate) of 99% for galaxies and 88% for stars. By combining colors with morphology,udour star–galaxy separation method yields better results than the new SExtractor classifier spread_model, inudparticular at the faint end (iP1 > 22). We also use our method to derive photometric redshifts for galaxies in theudCOSMOS bright multiwavelength data set down to an error in (1 + z) of s = 0.013, which compares well withudestimates from spectral energy distribution fitting on the same data (s = 0.007) while making a significantly smaller number of assumptions.
机译:我们将遗传算法(GA)和支持向量机(SVM)机器学习 udalgorithms结合使用,以解决天文学界面临的两个重要问题:星表-星系分离和 uu光度红移估计在调查目录中。我们使用GA在第一步中选择相关特征,然后在第二步中对SVM参数进行优化,以获得最优的参数集以进行udclass分类或回归,在此过程中,我们避免了过拟合的情况。我们将方法应用于 udPan-STARRS1数据中的星系-星系分离。我们证明了我们的方法正确地将98%的物体分类到iP1 = 24.5,其中星系的不完全性(或真实正向率)为99%,恒星为88%。通过将颜色与形态相结合, udour星-银河分离方法比新的SExtractor分类器spread_model产生更好的结果,尤其是在模糊的末端(iP1> 22)。我们还使用我们的方法来推导 udCOSMOS明亮多波长数据集中星系的光度红移,该数据集的误差(1 + z)为s = 0.013,与基于同一数据的光谱能量分布拟合得出的估算值( s = 0.007),而做出的假设则少得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号