首页> 外文OA文献 >Approximation of greedy algorithms for Max-ATSP, Maximal Compression, and Shortest Cyclic Cover of Strings
【2h】

Approximation of greedy algorithms for Max-ATSP, Maximal Compression, and Shortest Cyclic Cover of Strings

机译:Max-ATSP,最大压缩和最短字符串循环覆盖率的贪婪算法的近似值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given a directed graph G with weights on its arcs, the Maximum Asymmetric Travelling Salesman Problem (Max- ATSP) asks for a Hamiltonian path of maximum weight covering G. Max-ATSP, a central problem in computer science, is known to NP-hard and hard to approximate. In the general case, when the Triangle Inequality is not satisfied, the best approximation ratio known to date equals 2/3. Now consider the Overlap Graph for a set of finite words P := {s1 , . . . , s p }: the directed graph in which an arc links two words with a weight equals to the length of their maximal overlap. When Max-ATSP is applied to the Overlap Graph, it solves the Maximal Compression or Shortest Superstring problem, where one searches for a string of minimal length having each input word as a substring. Again these problems are hard to approximate. Both for Max-ATSP and for Maximal Compression, good approximation algorithms use a cover of the graph by a set of cycles or of the words by a set of cyclic strings. These questions are known as Maximal Directed Cyclic Cover (MDCC) and as Shortest Cyclic Cover of Strings (SCCS), and can be solved in polynomial time. However, among these four problems, the approximation ratio achieved by a simple greedy algorithm is known only for Maximal Compression. In a seminal but complex proof, Tarhio and Ukkonen showed that it achieves 1/2 compression ratio. Taking advantage of the power of subset systems, we investigate the approximation of associated greedy algorithms for these four problems, and show they reach a ratio of 1/3 for Max- ATSP, 1/2 for Maximal Compression and for Maximal Cyclic Cover, and gives an exact solution for the Shortest Cyclic Cover of Strings. The proof for Maximal Compression is simpler than known ones. For these problems, greedy algorithms are easier to implement and often faster than existing approximation algorithms, an important fact since these problems have practical applications, for instance in data compression and computational biology.
机译:给定一个在其弧上具有权重的有向图G,最大不对称旅行推销员问题(Max-ATSP)要求最大覆盖G的汉密尔顿路径。Max-ATSP是计算机科学中的核心问题,NP-hard知道而且很难估计。在一般情况下,当不满足三角不等式时,迄今为止已知的最佳近似比等于2/3。现在考虑一组有限词P:= {s1,..的重叠图。 。 。 ,s p}:一个有向图,其中一个弧线链接两个权重等于其最大重叠长度的单词。将Max-ATSP应用于重叠图时,它可以解决“最大压缩”或“最短超字符串”问题,在该问题中,搜索一个最小长度的字符串,并将每个输入字作为子字符串。同样,这些问题很难估计。无论是对于Max-ATSP还是对于最大压缩,良好的近似算法都使用一组循环来覆盖图形,或者使用一组循环字符串来覆盖字。这些问题被称为最大有向循环覆盖(MDCC)和字符串的最短循环覆盖(SCCS),可以在多项式时间内解决。但是,在这四个问题中,仅对于最大压缩,才知道通过简单的贪心算法获得的逼近率。 Tarhio和Ukkonen在一项开创性但复杂的证明中表明,该压缩率达到1/2。利用子集系统的功能,我们研究了这四个问题的相关贪婪算法的近似值,并表明它们对Max-ATSP的比率为1/3,对于最大压缩和最大循环覆盖率的比率为1/2,并且给出了最短的字符串循环覆盖的精确解决方案。最大压缩的证明比已知证明更简单。对于这些问题,贪婪算法比现有的近似算法更易于实现并且通常更快,这是重要的事实,因为这些问题具有实际应用,例如在数据压缩和计算生物学中。

著录项

  • 作者

    Cazaux Bastien; Rivals Eric;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号