首页> 外文OA文献 >Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations
【2h】

Validated and numerically efficient Chebyshev spectral methods for linear ordinary differential equations

机译:经过验证且数值有效的Chebyshev谱方法用于线性常微分方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work we develop a validated numerics method for the solution of linear ordinary differential equations (LODEs). A wide range of algorithms (i.e., Runge-Kutta, collocation, spectral methods) exist for numerically computing approximations of the solutions. Most of these come with proofs of asymptotic convergence, but usually, provided error bounds are non-constructive. However, in some domains like critical systems and computer-aided mathematical proofs, one needs validated effective error bounds. We focus on both the theoretical and practical complexity analysis of a so-called \emph{a posteriori} quasi-Newton validation method, which mainly relies on a fixed-point argument of a contracting map. Specifically, given a polynomial approximation, obtained by some numerical algorithm and expressed in Chebyshev basis, our algorithm efficiently computes an accurate and rigorous error bound. For this, we study theoretical properties like compactness, convergence, invertibility of associated linear integral operators and their truncations in a suitable coefficient space of Chebyshev series. Then, we analyze the almost-banded matrix structure of these operators, which allows for very efficient numerical algorithms for both numerical solutions of LODEs and rigorous computation of the approximation error. Finally, several representative examples show the advantages of our algorithms as well as their theoretical and practical limits.
机译:在这项工作中,我们为线性常微分方程(LODE)的求解开发了一种经过验证的数值方法。存在大量算法(即,朗格-库塔(Runge-Kutta),并置,频谱方法),用于数值计算解的近似值。其中大多数带有渐近收敛的证明,但是通常,只要误差范围是非构造性的即可。但是,在某些领域,例如关键系统和计算机辅助数学证明,人们需要经过验证的有效误差范围。我们专注于所谓\ emph {apostiori}拟牛顿验证方法的理论和实践复杂性分析,该方法主要依赖于收缩图的定点参数。具体来说,给定多项式近似值(通过某些数值算法获得并以Chebyshev为基础表示),我们的算法可以有效地计算出准确而严格的误差范围。为此,我们研究了适当的Chebyshev级数系数空间中的理论性质,如紧密性,收敛性,关联的线性积分算子的可逆性及其截断。然后,我们分析了这些算子的几乎带状的矩阵结构,这为LODE的数值解和近似误差的严格计算提供了非常有效的数值算法。最后,几个有代表性的例子展示了我们算法的优势以及它们的理论和实践极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号