首页> 外文会议>AMOS 2013 >Modified Chebyshev Picard Iteration for Efficient Numerical Integration of Ordinary Differential Equations
【24h】

Modified Chebyshev Picard Iteration for Efficient Numerical Integration of Ordinary Differential Equations

机译:修改了Chebyshev Picard迭代,以实现常微分方程的有效数值集成

获取原文

摘要

Modified Chebyshev Picard Iteration (MCPI) is an iterative numerical method for approximating solutions of linear or non-linear Ordinary Differential Equations (ODEs) to obtain time histories of system state trajectories. Unlike other step-by-step differential equation solvers, like the Runge-Kutta family of numerical integrators, MCPI approximates long arcs of the state trajectory with an iterative path approximation approach, and is ideally suited to parallel computation. Orthogonal Chebyshev Polynomials are used as basis functions during each path iteration, and the integrations of the Picard iteration are then done analytically. The orthogonality of the Chebyshev basis functions mean that the least square approximations can be computed without a matrix inversion; the coefficients are conveniently computed robustly from discrete inner products. As a consequence of discrete sampling and weighting adopted for the inner product definition, the Runge phenomena errors that usually occur near the ends of the approximation intervals are significantly minimized. The MCPI algorithm utilizes a vector-matrix framework for computational efficiency. Additionally, all Chebyshev coefficients and integrand. function evaluations are independent, meaning they can be simultaneously computed in parallel for further' decreased computational cost. Over an order of magnitude speedup from traditional methods is achieved in serial processing, and an additional order of magnitude is achievable in parallel architectures. This paper presents a new MCPI library, a modular toolset designed to allow MCPI to be easily applied to a wide variety of ODE systems. Library users will not have to concern themselves with the underlying mathematics behind the MCPI method. Inputs are the boundary conditions of the dynamical system, the integrand function governing system behavior, and the desired time interval of integration,and the output is a time history of the system states over the interval of interest. Examples from the field of astrodynamics are presented to compare the output from the MCPI library to current state-of-practice numerical integration methods. It is shown that MCPI is capable of out-performing the state-of-practice in terms of computational cost and accuracy.
机译:改进的Chebyshev Picard迭代(MCPI)是一种迭代的数值方法,用于近似线性或非线性常微分方程(杂物)的解,以获得系统状态轨迹的时间历史。与其他逐步的差分方程求解器不同,如跳动库族的数值积分器,MCPI以迭代路径近似方法近似于状态轨迹的长弧,并且理想地适用于并行计算。在每个路径迭代期间,正交Chebyshev多项式用作基本函数,然后在分析上进行图解迭代的集成。 Chebyshev基函数的正交性意味着可以在没有矩阵反转的情况下计算最小二乘近似;系数可方便地从离散内部产品鲁莽地计算。由于内部产品定义采用的离散采样和加权,通常在近似间隔的末端附近发生径流现象误差被显着最小化。 MCPI算法利用矢量矩阵框架进行计算效率。此外,所有Chebyshev系数和Integrand。功能评估是独立的,这意味着它们可以同时并行计算,以进一步下降“降低计算成本。在串行处理中实现了从传统方法实现传统方法的大量加速,并且在并行架构中可以实现额外的数量级。本文介绍了一个新的MCPI库,一个模块化工具集,旨在允许MCPI轻松应用于各种各样的颂歌系统。图书馆用户不必与MCPI方法背后的基础数学关注。输入是动力系统,被积函数调节系统的行为,并整合所需的时间间隔的边界条件,并输出为系统状态在感兴趣的间隔时间历史。提出了来自AstrovyMnamics领域的示例,以将来自MCPI库的输出与当前的练习状态数字集成方法进行比较。结果表明,MCPI能够在计算成本和准确性方面进行练习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号