首页> 外文OA文献 >Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques--A European effort to accelerate fusion materials development
【2h】

Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques--A European effort to accelerate fusion materials development

机译:使用同步加速器,中子,TEM和新颖的微机械技术进行先进的材料表征和建模-欧洲为加速聚变材料开发所做的努力

摘要

For the realization of fusion as an energy source, the development of suitable materials is one of the most critical issues. The required material properties are in many aspects unique compared to the existing solutions, particularly the need for necessary resistance to irradiation with neutrons having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected into the plasma and resistance to erosion and hydrogen isotope retention. The development of materials fulfilling these and other criteria is a large-scale and long-term activity which involves basic materials science, materials development, characterization under both loading conditions and off-line, as well as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA - Fusion Energy Materials Science - Coordination Action - aims at accelerating materials development by integrating advanced materials characterization techniques, among them the efficient use of neutron and synchrotron-based techniques, into the fusion materials community. Further, high-end transmission electron microscopy and mechanical characterization (also on a microscopic level in order to facilitate tests of small material volumes, such as from neutron irradiation campaigns) are to be more extensively applied in fusion materials research. Finally, irradiation facilities for neutron damage benchmarking are contributing to the understanding of radiation effects. This overview demonstrates by means of a few examples the recent advancements in fusion materials research, e.g. by applying synchrotron X-ray and neutron tomography to novel materials and components. Deeper understanding of radiation effects is achieved by in situ TEM of materials under irradiation. Modeling of irradiation effects is closely linked to activities at irradiation facilities. Finally, new developments in mechanical testing on micro- and nano-scales are addressed.
机译:为了实现聚变作为一种能源,开发合适的材料是最关键的问题之一。与现有解决方案相比,所需的材料特性在许多方面都是独特的,特别是需要对能量高达14 MeV的中子的辐射具有必要的抵抗力。除了承受中子的作用外,还必须保持结构材料的机械稳定性至高温。暴露于等离子体中的材料必须与聚变等离子体兼容,无论是注入等离子体中产生的杂质,还是抗腐蚀和氢同位素保留方面。满足这些条件和其他条件的材料的开发是一项大规模的长期活动,涉及基础材料科学,材料开发,在载荷条件和离线条件下进行表征以及在中子通量引起的条件下进行测试。为了实现DEMO电厂,必须及时提供材料解决方案。欧洲倡议FEMaS-CA-聚变能源材料科学-协调行动-旨在通过将先进的材料表征技术(其中包括对中子和基于同步加速器的技术的有效利用)整合到聚变材料领域中,从而加快材料开发。此外,高端透射电子显微镜和机械表征(也在微观水平上,以便于对小材料量进行测试,例如来自中子辐照运动)将在融合材料研究中得到更广泛的应用。最后,用于中子损伤基准测试的辐射设备有助于理解辐射效应。该概述通过一些示例展示了融合材料研究的最新进展,例如聚变材料。通过将同步加速器X射线和中子断层扫描技术应用于新型材料和组件。通过辐射下材料的原位TEM可以更深入地了解辐射效果。辐射效果的建模与辐射设施的活动密切相关。最后,讨论了微米级和纳米级机械测试的新发展。

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号