首页> 外文OA文献 >Power-Efficient Sensor Placement and Transmission Structure for Data Gathering under Distortion Constraints
【2h】

Power-Efficient Sensor Placement and Transmission Structure for Data Gathering under Distortion Constraints

机译:失真约束下用于数据收集的高能效传感器放置和传输结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the joint optimization of sensor placement and transmission structure for data gathering, where a given number of nodes need to be placed in a field such that the sensed data can be reconstructed at a sink within specified distortion bounds while minimizing the energy consumed for communication. We assume that the nodes use either joint entropy coding based on explicit communication between sensor nodes, where coding is done when side information is available, or Slepian-Wolf coding where nodes have knowledge of network correlation statistics. We consider both maximum and average distortion bounds. We prove that this optimization is NP-complete since it involves an interplay between the spaces of possible transmission structures given radio reachability limitations, and feasible placements satisfying distortion bounds.We address this problem by first looking at the simplified problem of optimal placement in the one-dimensional case. An analytical solution is derived for the case when there is a simple aggregation scheme, and numerical results are provided for the cases when joint entropy encoding is used. We use the insight from our 1-D analysis to extend our results to the 2-D case and compare it to typical uniform random placement and shortest-path tree. Our algorithm for two-dimensional placement and transmission structure provides two to three fold reduction in total power consumption and between one to two orders of magnitude reduction in bottleneck power consumption. We perform an exhaustive performance analysis of our scheme under varying correlation models and model parameters and demonstrate that the performance improvement is typical over a range of data correlation models and parameters. We also study the impact of performing computationally-efficient data conditioning over a local scope rather than the entire network. Finally, we extend our explicit placement results to a randomized placement scheme and show that such a scheme can be effective when deployment does not permit exact node placement.
机译:我们考虑对传感器放置和传输结构进行联合优化以进行数据收集,其中需要将给定数量的节点放置在一个字段中,以便可以在指定失真范围内的接收器处重建感测到的数据,同时将通信消耗的能量降至最低。我们假设节点使用基于传感器节点之间显式通信的联合熵编码(当有边信息可用时进行编码),或者使用Slepian-Wolf编码(其中节点了解网络相关统计信息)。我们考虑最大和平均失真范围。我们证明此优化是NP完全的,因为它涉及给定无线电可达性限制的可能传输结构的空间与满足失真范围的可行位置之间的相互作用,因此,我们首先看一看最优位置的简化问题来解决此问题。尺寸的情况。对于存在简单聚合方案的情况,得出了一个解析解,并为使用联合熵编码的情况提供了数值结果。我们利用一维分析的见解将结果扩展到二维案例,并将其与典型的统一随机放置和最短路径树进行比较。我们的二维布局和传输结构算法可将总功耗降低2到3倍,而瓶颈功耗则降低1到2个数量级。我们在变化的相关模型和模型参数下对我们的方案进行了详尽的性能分析,并证明了在一系列数据相关模型和参数上性能的提高是典型的。我们还研究了在本地范围而不是整个网络上执行具有计算效率的数据条件的影响。最后,我们将明确的放置结果扩展到随机放置方案,并表明当部署不允许确切的节点放置时,这种方案可以有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号