首页> 外文OA文献 >The Effects of Traditional Anti-Virus Labels on Malware Detection using Dynamic Runtime Opcodes
【2h】

The Effects of Traditional Anti-Virus Labels on Malware Detection using Dynamic Runtime Opcodes

机译:传统防病毒标签对使用动态运行时操作码进行恶意软件检测的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The arms race between the distributors of malware and those seeking to provide defenses has so far favored the former. Signature detection methods have been unable to cope with the onslaught of new binaries aided by rapidly developing obfuscation techniques. Recent research has focused on the analysis of low-level opcodes, both static and dynamic, as a way to detect malware. Although sometimes successful at detecting malware, static analysis still fails to unravel obfuscated code, whereas dynamic analysis can allow researchers to investigate the revealed code at runtime. Research in the field has been limited by the underpinning data sets; old and inadequately sampled malware can lessen the extrapolation potential of such data sets. The main contribution of this paper is the creation of a new parsed runtime trace data set of over 100 000 labeled samples, which will address these shortcomings, and we offer the data set itself for use by the wider research community. This data set underpins the examination of the run traces using classifiers on count-based and sequence-based data. We find that malware detection rates are lessened when samples are labeled with traditional anti-virus (AV) labels. Neither count-based nor sequence-based algorithms can sufficiently distinguish between AV label classes. Detection increases when malware is re-classed with labels yielded from unsupervised learning. With sequenced-based learning, detection exceeds that of labeling as simply “malware” alone. This approach may yield future work, where the triaging of malware can be more effective.
机译:迄今为止,恶意软件的发行人与寻求提供防御措施的发行人之间的军备竞赛一直支持前者。签名检测方法无法解决快速发展的混淆技术对新二进制文件的攻击。最近的研究集中于分析静态和动态的低级操作码,以检测恶意软件。尽管有时可以成功地检测到恶意软件,但静态分析仍无法解开混淆的代码,而动态分析可以使研究人员在运行时研究所揭示的代码。该领域的研究受到基础数据集的限制。旧的且采样不足的恶意软件可以减少此类数据集的外推潜力。本文的主要贡献是创建了一个新的已解析的运行时跟踪数据集,该数据集包含超过10万个带标签的样本,可以解决这些缺点,我们提供的数据集本身可供更广泛的研究社区使用。该数据集支持对基于计数和基于序列的数据使用分类器对运行轨迹进行检查。我们发现,使用传统的防病毒(AV)标签标记样本后,恶意软件的检测率会降低。基于计数的算法和基于序列的算法都无法充分区分AV标签类别。使用从无监督学习中产生的标签对恶意软件进行重新分类时,检测量会增加。通过基于序列的学习,检测不仅可以简单地标记为“恶意软件”,还可以检测标记。这种方法可能会带来未来的工作,其中对恶意软件进行分类可以更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号