首页> 外文OA文献 >Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: A study on nozzle geometrical parameters
【2h】

Numerical investigation of dual-stage high velocity oxy-fuel (HVOF) thermal spray process: A study on nozzle geometrical parameters

机译:二级高速含氧燃料(HVOF)热喷涂过程的数值研究:喷嘴几何参数的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The present study takes the advantage of computational fluid dynamics (CFD) methods to model steady-state, two-dimensional, axisymmetric, turbulent, compressible and combusting flow in a dual-stage high velocity oxy-fuel (HVOF) thermal spray system. The Eulerian method is used to solve the continuum gas phase and the Lagrangian method is utilized for tracking the particles. The effects of particle loads on the continuous gas phase are included in the simulation. Thus, compared to the previous studies, we investigate the influence of coupling between the particle and gas phases in modeling of the dual-stage HVOF process. It is found that decouple modeling of the particle and the continuous phase causes a significant error in velocity of particle at the impact moment, even for low powder particle loading. We further investigate the effects of four geometrical parameters on the behavior of gas phase and consequently the particle phase. Results also show that the turbulent intensity of flow at different sections of the warm spray process is the most important factor determining the radial distribution of nitrogen and temperature in the barrel. It also determines the radial distribution of oxygen in the free jet outside of the barrel. It is further found that reduction of the first nozzle diameter and increasing the length of the divergent section (for a fixed divergent angle) of the convergent-divergent nozzle reduce the particle temperature while these changes do not affect the particle velocity. In other words, changing these geometrical parameters has a desirable effect on the particle temperature without causing an undesirable change on the particle velocity.
机译:本研究利用计算流体动力学(CFD)方法对两级高速氧-燃料(HVOF)热喷涂系统中的稳态,二维,轴对称,湍流,可压缩和燃烧流进行建模。欧拉方法用于求解连续气相,拉格朗日方法用于跟踪粒子。模拟中包括了颗粒载荷对连续气相的影响。因此,与以前的研究相比,我们在双阶段HVOF过程建模中研究了颗粒和气相之间的耦合影响。已经发现,即使对于低粉末颗粒负载,颗粒与连续相的分离模型也会在碰撞时刻引起颗粒速度的显着误差。我们进一步研究了四个几何参数对气相和颗粒相行为的影响。结果还表明,热喷涂过程不同部分的湍流强度是决定机筒中氮的径向分布和温度的最重要因素。它还确定了枪管外部自由射流中氧气的径向分布。进一步发现,减小第一喷嘴直径并增加会聚-发散喷嘴的发散部分的长度(对于固定发散角)会减小颗粒温度,而这些变化不会影响颗粒速度。换句话说,改变这些几何参数对粒子温度具有理想的影响,而不会引起粒子速度的不期望的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号