首页> 外文OA文献 >A comparative study of discrete velocity methods for low-speed rarefied gas flows
【2h】

A comparative study of discrete velocity methods for low-speed rarefied gas flows

机译:低速稀薄气体流离散速度方法的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the study of rarefied gas dynamics, the discrete velocity method (DVM) has been widely employed to solve the gas kinetic equations. Although various versions of DVM have been developed, their performance, in terms of modeling accuracy and computational efficiency, is yet to be comprehensively studied in all the flow regimes. Here, the traditional third-order time-implicit Godunov DVM (GDVM) and the recently developed discrete unified gas-kinetic scheme (DUGKS) are analysed in finding steady-state solutions of the low-speed force-driven Poiseuille and lid-driven cavity flows. With the molecular collision and free streaming being treated simultaneously, the DUGKS preserves the second-order accuracy in the spatial and temporal discretizations in all flow regimes. Towards the hydrodynamic flow regime, not only is the DUGKS faster than the GDVM when using the same spatial mesh, but also requires less spatial resolution than that of the GDVM to achieve the same numerical accuracy. From the slip to free molecular flow regimes, however, the DUGKS is slower than the GDVM, due to the complicated flux evaluation and the restrictive time step which is smaller than the maximum effective time step of the GDVM. Therefore, the DUGKS is preferable for problems involving different flow regimes, particularly when the hydrodynamic flow regime is dominant. For highly rarefied gas flows, if the steady-state solution is mainly concerned, the implicit GDVM, which can boost the convergence significantly, is a better choice.
机译:在稀有气体动力学研究中,离散速度法(DVM)已被广泛用于求解气体动力学方程。尽管已经开发了各种版本的DVM,但在建模精度和计算效率方面,它们的性能尚未在所有流态中得到全面研究。在这里,分析传统的三阶时间隐式Godunov DVM(GDVM)和最近开发的离散统一气体动力学方案(DUGKS),以寻找低速力驱动的Poiseuille和盖驱动的空腔的稳态解流。在同时处理分子碰撞和自由流的情况下,DUGGS在所有流动状态下的空间和时间离散化中均保持了二阶精度。对于流体动力流态,当使用相同的空间网格时,DUGGS不仅比GDVM快,而且与GDVM相比,其空间分辨率要低,以实现相同的数值精度。但是,从滑移到自由分子流动状态,由于复杂的通量评估和限制时间步长小于GDVM的最大有效时间步长,DUGGS比GDVM慢。因此,对于涉及不同流态的问题,尤其是在流体动力流态占优势的情况下,DUGGS是优选的。对于高度稀疏的气流,如果主要关注稳态解,则隐式GDVM是更好的选择,它可以显着提高收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号