首页> 外文OA文献 >Stochastic dynamical behavior of SIRS epidemic models with random perturbation
【2h】

Stochastic dynamical behavior of SIRS epidemic models with random perturbation

机译:具有随机扰动的SIRS流行病模型的随机动力学行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider a stochastic SIRS model with parameter perturbation, which is a standard technique in modeling population dynamics. In our model, the disease transmission coefficient and the removal rates are all affected by noise. We show that the stochastic model has a unique positive solution as it is essential in any population model. Then we establish conditions for extinction or persistence of the infectious disease. When the infective part is forced to expire, the susceptible part converges weakly to an inverse-gamma distribution with explicit shape and scale parameters. In case of persistence, by new stochastic Lyapunov functions, we show the ergodic property and positive recurrence of the stochastic model. We also derive an estimate for the mean of the stationary distribution. The analytical results are all verified by computer simulations, including examples based on experiments in laboratory populations of mice.
机译:在本文中,我们考虑带有参数摄动的随机SIRS模型,这是建模种群动态的标准技术。在我们的模型中,疾病的传播系数和清除率都受到噪声的影响。我们证明了随机模型具有独特的正解,因为它在任何人口模型中都是必不可少的。然后,我们为传染病的灭绝或持续性建立了条件。当感染部分被迫终止时,易感部分会收敛到具有明确形状和比例参数的反伽马分布。在持久性的情况下,通过新的随机Lyapunov函数,我们显示了该随机模型的遍历性质和正递归。我们还导出了平稳分布平均值的估计值。分析结果全部通过计算机模拟验证,包括基于小鼠实验室种群实验的实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号