首页> 外文OA文献 >Image segmentation using joint spatial-intensity-shape features: Application to CT lung nodule segmentation
【2h】

Image segmentation using joint spatial-intensity-shape features: Application to CT lung nodule segmentation

机译:利用关节空间强度形状特征进行图像分割:在CT肺结节分割中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automatic segmentation of medical images is a challenging problem due to the complexity and variability of human anatomy, poor contrast of the object being segmented, and noise resulting from the image acquisition process. This paper presents a novel non-parametric feature analysis method for the segmentation of 3D medical lesions. The proposed algorithm combines 1) a volumetric shape feature (shape index) based on high-order partial derivatives; 2) mean shift clustering in a joint spatial-intensity-shape (JSIS) feature space; and 3) a modified expectation-maximization (MEM) algorithm on the mean shift mode map to merge the neighboring regions (modes). In such a scenario, the volumetric shape feature is integrated into the process of the segmentation algorithm. The joint spatial–intensity-shape features provide rich information for the segmentation of the anatomic structures or lesions (tumors). The proposed method has been evaluated on a clinical dataset of thoracic CT scans that contains 68 nodules. A volume overlap ratio between each segmented nodule and the ground truth annotation is calculated. Using the proposed method, the mean overlap ratio over all the nodules is 0.80. On visual inspection and using a quantitative evaluation, the experimental results demonstrate the potential of the proposed method. It can properly segment a variety of nodules including juxta-vascular and juxta-pleural nodules, which are challenging for conventional methods due to the high similarity of intensities between the nodules and their adjacent tissues. This approach could also be applied to lesion segmentation in other anatomies, such as polyps in the colon.
机译:由于人体解剖结构的复杂性和可变性,被分割物体的对比度差以及图像采集过程产生的噪声,医学图像的自动分割是一个具有挑战性的问题。本文提出了一种新颖的非参数特征分析方法,用于3D医学病变的分割。该算法结合了:1)基于高阶偏导数的体积形状特征(形状指数); 2。 2)在联合空间强度形状(JSIS)特征空间中的均值漂移聚类; 3)在平均移位模式图上的改进的期望最大化(MEM)算法,以合并相邻区域(模式)。在这种情况下,体积形状特征被集成到分割算法的过程中。关节的空间强度形状特征为解剖结构或病变(肿瘤)的分割提供了丰富的信息。在包含68个结节的胸部CT扫描的临床数据集上对提出的方法进行了评估。计算每个分段结节与地面真相注释之间的体积重叠率。使用所提出的方法,所有结节的平均重叠率为0.80。通过目视检查和使用定量评估,实验结果证明了该方法的潜力。它可以适当地分割各种结节,包括近结节和近胸膜结节,由于结节及其相邻组织之间的强度高度相似,这对于传统方法而言具有挑战性。这种方法也可以应用于其他解剖结构的病变分割,例如结肠息肉。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号