首页> 外文OA文献 >Support vector machine for evaluating seismic-liquefaction potential using shear wave velocity
【2h】

Support vector machine for evaluating seismic-liquefaction potential using shear wave velocity

机译:支持向量机,利用剪切波速度评估地震液化潜力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is receiving increased attention because both shear wave velocity and liquefaction resistance are similarly influenced by many of the same factors such as void ratio, state of stress, stress history and geologic age. In this paper, the potential of support vector machine (SVM) based classification approach has been used to assess the liquefaction potential from actual shear wave velocity data. In this approach, an approximate implementation of a structural risk minimization (SRM) induction principle is done, which aims at minimizing a bound on the generalization error of a model rather than minimizing only the mean square error over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil based on shear wave velocity. The dataset consists the information of soil characteristics such as effective vertical stress (sigma'(v0)), soil type, shear wave velocity (V-s) and earthquake parameters such as peak horizontal acceleration (a(max)) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for training and remaining 56 are used for testing the model. The study indicated that SVM can successfully model the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the model based on soil characteristics, the input parameters used are sigma'(v0), soil type. V-s, a(max) and M. In the other model based on shear wave velocity alone uses V-s, a(max) and M as input parameters. In this paper, it has been demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector machine model. (C) 2010 Elsevier B.V. All rights reserved.
机译:使用剪切波速度数据作为评价砂土液化潜力的现场指标受到了越来越多的关注,因为剪切波速度和抗液化性都受到许多相同因素的影响,例如孔隙率,应力状态,应力历史和地质年代。在本文中,基于支持向量机(SVM)的潜力的分类方法已用于从实际剪切波速度数据评估液化潜力。在这种方法中,完成了结构风险最小化(SRM)归纳原理的近似实现,其目的是最小化模型的泛化误差的界限,而不是仅最小化数据集的均方误差。在此,SVM已被用作分类工具,以基于剪切波速度预测土壤的液化潜力。该数据集包含土壤特征信息,例如有效垂直应力(sigma'(v0)),土壤类型,剪切波速度(Vs)和地震参数,例如峰值水平加速度(a(max))和地震震级(M) 。在186个可用数据集中,有130个被考虑用于训练,其余56个被用于测试模型。研究表明,支持向量机可以成功地模拟地震参数,土壤参数和液化势之间的复杂关系。在基于土壤特性的模型中,使用的输入参数为sigma'(v0)(土壤类型)。 V-s,a(max)和M。在另一个基于剪切波速度的模型中,仅使用V-s,a(max)和M作为输入参数。在本文中,已经证明使用支持向量机模型可以单独使用Vs来预测土壤的液化潜力。 (C)2010 Elsevier B.V.保留所有权利。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号