How to refine a near-native structure to make it closer to its native conformation is an unsolved problem in protein-structure and protein-protein complex-structure prediction. In this article, we first test several scoring functions for selecting locally resampled near-native protein-protein docking conformations and then propose a computationally efficient protocol for structure refinement via local resampling and energy minimization. The proposed method employs a statistical energy function based on a Distance-scaled Ideal-gas REference state (DFIRE) as an initial filter and an empirical energy function EMPIRE (EMpirical Protein-InteRaction Energy) for optimization and re-ranking. Significant improvement of final top-1 ranked structures over initial near-native structures is observed in the ZDOCK 2.3 decoy set for Benchmark 1.0 (74% whose global rmsd reduced by 0.5 A r more and only 7% increased by 0.5 A r more). Less significant improvement is observed for Benchmark 2.0 (38% versus 33%). Possible reasons are discussed.
展开▼
机译:在蛋白质结构和蛋白质-蛋白质复合物结构预测中,如何细化近自然结构使其更接近天然构象是尚未解决的问题。在本文中,我们首先测试用于选择局部重采样的近天然蛋白质-蛋白质对接构象的几种评分功能,然后提出通过局部重采样和能量最小化来进行结构细化的高效计算协议。所提出的方法采用基于距离标度的理想气体参考状态(DFIRE)的统计能量函数作为初始过滤器,并采用经验能量函数EMPIRE(EMpirical Protein-InteRaction Energy)(用于优化和重新排序)。在基准1.0的ZDOCK 2.3诱骗装置中,观察到最终排名靠前的结构比初始的本地结构有显着改善(74%的全球rmsd降低了0.5 A morer,而只有7%的升高了0.5 Ar。 )。对基准2.0观察到的改进不太明显(38%对33%)。讨论了可能的原因。
展开▼