Combining outputs from different classifiers to achieve high accuracy in classification task is one of the most active research areas in ensemble method. Although many state-of-art approaches have been introduced, no one method performs the best on all data sources. With the aim of introducing an effective classification model, we propose a Gaussian Mixture Model (GMM) based method that combines outputs of base classifiers (called meta-data or Level1 data) resulted from Stacking Algorithm. We further apply Genetic Algorithm (GA) to that data as a feature selection strategy to explore an optimal subset of Level1 data in which our GMM-based approach can achieve high accuracy. Experiments on 21 UCI Machine Learning Repository data files and CLEF2009 medical image database demonstrate the advantage of our framework compared with other well-known combining algorithms such as Decision Template, Multiple Response Linear Regression (MLR), SCANN and fixed combining rules as well as GMM-based approaches on original data.
展开▼