首页> 外文OA文献 >Semi-supervised hyperspectral band selection via sparse linear regression and hypergraph models
【2h】

Semi-supervised hyperspectral band selection via sparse linear regression and hypergraph models

机译:通过稀疏线性回归和超图模型进行半监督高光谱谱带选择

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Band selection is an important step towards effective and efficient object classification in hyperspectral imagery. In this paper, we propose a semi-supervised learning method for band selection based on a sparse linear regression model. This model uses a least absolute shrinkage and selection operator to compute the regression coefficients from both labeled and unlabeled samples. These coefficients are then used to compute a contribution score for each band, which allows bands with high scores being selected for the testing step. During this process, unlabeled samples also contribute to the coefficients calculation. In order to propagate the labels to these samples, a hypergraph is first built to describe the relationship between labeled and unlabeled samples. This leads to an adjacency matrix whose entries are the sum of corresponding weights of hyperedges. Then matrix subspace learning method is used to estimate the labels of unlabeled samples. The proposed method is evaluated on the APHI dataset. Comparison with several baseline methods has shown the advantages of the proposed method on the pixel-level classification.
机译:波段选择是朝着高光谱图像中有效和高效的对象分类迈出的重要一步。在本文中,我们提出了一种基于稀疏线性回归模型的半监督学习方法。该模型使用最小绝对收缩和选择算子来计算标记和未标记样本的回归系数。然后将这些系数用于计算每个频段的贡献分数,从而可以为测试步骤选择得分较高的频段。在此过程中,未标记的样本也有助于系数计算。为了将标记传播到这些样本,首先建立了一个超图来描述标记样本和未标记样本之间的关系。这导致一个邻接矩阵,该矩阵的条目是超边缘的相应权重之和。然后使用矩阵子空间学习方法估计未标记样本的标签。该方法在APHI数据集上进行了评估。与几种基线方法的比较表明,该方法在像素级分类上具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号