机译:通过稀疏缩放的线性平方回归进行半监督特征选择
Shenzhen Univ Coll Comp Sci & Software Shenzhen 518060 Guangdong Peoples R China;
Northwestern Polytech Univ Sch Comp Sci Xian 710072 Shanxi Peoples R China|Northwestern Polytech Univ Ctr Opt IMagery Anal & Learning OPTIMAL Xian 710072 Shanxi Peoples R China;
Feature extraction; Computational complexity; Laplace equations; Knowledge discovery; Data engineering; Iterative methods; Adaptation models; Feature selection; semi-supervised feature selection; sparse feature selection; least square regression;
机译:基于GraphaCian基于散射矩阵的半监控稀疏特征选择
机译:基于稀疏非线性特征的局部加权核偏最小二乘回归用于非线性时变过程的虚拟传感
机译:基于l(0)-范数的结构稀疏最小二乘回归进行特征选择
机译:通过重新定义最小二乘回归补充剂的鉴别半监督特征选择
机译:稀疏的偏最小二乘回归,可同时进行降维和变量选择,并应用于高维基因组数据
机译:稀疏的偏最小二乘回归可同时减少维数和选择变量
机译:通过稀疏线性回归和超图形模型选择半监督的高光谱带
机译:使用sTaRpaC的非线性最小二乘回归:标准时间序列和回归包