首页> 外文OA文献 >Statistical properties of random fractals : geometry, growth and interface dynamics
【2h】

Statistical properties of random fractals : geometry, growth and interface dynamics

机译:随机分形的统计性质:几何形状,生长和界面动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis comprises analytic and numerical studies of static, geometrical properties of fractals and dynamical processes in them. First, we have numerically estimated the subset fractal dimensions DS describing the scaling of some subsets S of the fractal cluster with the linear cluster size R in the q-state Potts models. These subsets include the total mass of the cluster, the hull, the external perimeter, the singly connected bonds and the gates to fjords. Numerical data reveals complex corrections-to-scaling behavior needed to take into account for correct extrapolation of the data to the asymptotic large size limit. Using renormalization group theory the corrections-to-scaling terms are analytically derived. The numerical data are in good agreement with exact values of the fractal dimensions and with the exactly predicted correction terms. Regarding the growth of fractal structures, we consider 2D continuum deposition models which generate fractal structures from the point of view of percolation theory. In the particular model studied here, there is an effective inter-particle rejection. Using previous results from related irreversible deposition models mean field predictions for the percolation thresholds of the model are derived in the limits of the parameter space defining the model. Numerical simulations of the model support the theoretical results. The networks exhibit non-trivial spatial correlations, which manifest themselves in a power-law behavior of the mass density fluctuation correlation function for small distances. Geometric properties of fractals play a crucial role in the dynamics and kinetic roughening of driven fronts in fractals. Here we show that for the isotropic invasion percolation model, an algebraically decaying distribution for the nearest neighbor slope distribution of single-valued fronts follows from scaling arguments derived using the properties of percolation clusters. From the distribution, the form of which is also valid for anisotropic cases such as the diffusion limited aggregation model, the exponents governing the scaling of various spatio-temporal correlation functions are derived. The results indicate that the fractal growth models exhibit intrinsic anomalous scaling and multiscaling. Numerical simulations show excellent agreement with the predictions.
机译:本论文包括分形的静态,几何性质以及其中的动力学过程的解析和数值研究。首先,我们在数字上估计了子集分形维数DS,该维数描述了q态Potts模型中具有线性簇大小R的分形簇的一些子集S的缩放比例。这些子集包括群集的总质量,船体,外部周边,单个连接的键以及通往峡湾的门。数值数据揭示了将数据正确外推到渐近大尺寸限制时需要的复杂的按比例缩放行为。使用重归一化组理论,可以解析得出比例项校正。数值数据与分形维数的精确值以及精确预测的校正项非常吻合。关于分形结构的增长,我们考虑从渗流理论的观点来看,二维连续体沉积模型会生成分形结构。在这里研究的特定模型中,存在有效的粒子间排斥。使用来自相关不可逆沉积模型的先前结果,可以在定义模型的参数空间的限制中得出模型渗透阈值的现场预测。模型的数值模拟支持理论结果。网络表现出非平凡的空间相关性,这表现为质量距离波动相关函数在小距离范围内的幂律行为。分形的几何特性在分形中驱动前沿的动力学和动力学粗糙化中起着至关重要的作用。在这里,我们表明,对于各向同性入侵渗流模型,单值前沿的最接近邻域斜率分布的代数衰减分布遵循使用渗流簇属性推导的缩放参数。从分布中,其形式也适用于各向异性情况(例如扩散受限聚集模型),从而得出控制各种时空相关函数的标度的指数。结果表明,分形增长模型表现出固有的异常缩放和多缩放。数值模拟显示出与预测的极好的一致性。

著录项

  • 作者

    Asikainen Joonas;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号