首页> 外文OA文献 >Short-term prediction of traffic flow status for online driver information
【2h】

Short-term prediction of traffic flow status for online driver information

机译:在线驾驶员信息的交通流状态的短期预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The principal aim of this study was to develop a method for making a short-term prediction model of traffic flow status (i.e. travel time and a five-step travel-speed-based classification) and test its performance in the real world environment. Specifically, the objective was to find a method that can predict the traffic flow status on a satisfactory level, can be implemented without long delays and is practical for real-time use also in the long term. A sequence of studies shows the development process from offline models with perfect data to online models with field data. Models were based on MLP neural networks and self-organising maps. The purpose of the online model was to produce real-time information of the traffic flow status that can be given to drivers. The models were tested in practice. In conclusion, the results of online use of the prediction models in practice were promising and even a simple prediction model was shown to improve the accuracy of travel time information especially in congested conditions. The results also indicated that the self-adapting principle improved the performance of the model and made it possible to implement the model quite quickly. The model was practical for real-time use also in the long term in terms of the number of carry bits that it requires to restore the history of samples of traffic situations. As self-adapting this model performed better than as a static version i.e. without the self-adapting feature, as the proportion of correctly predicted traffic flow status increased considerably for the self-adapting model during the online trial.
机译:这项研究的主要目的是开发一种用于建立交通流状态的短期预测模型(即行进时间和基于行进速度的五步分类)的方法,并测试其在现实环境中的性能。具体而言,目标是找到一种方法,该方法可以在令人满意的水平上预测交通流状态,可以长时间不延迟地实施,并且对于长期使用也很实用。一系列研究显示了从具有完善数据的离线模型到具有现场数据的在线模型的开发过程。模型基于MLP神经网络和自组织图。在线模型的目的是产生可以提供给驾驶员的交通流状态的实时信息。该模型已在实践中进行了测试。总之,在实践中在线使用预测模型的结果是有希望的,甚至显示了一个简单的预测模型都可以提高旅行时间信息的准确性,尤其是在拥挤的情况下。结果还表明,自适应原理提高了模型的性能,并使其可以很快实现。就恢复交通状况样本的历史记录所需的进位位数而言,该模型还可以长期用于实时使用。由于自适应,此模型的性能要好于静态版本,即没有自适应功能,因为在在线试用期间,针对自适应模型的正确预测的流量状态比例显着增加。

著录项

  • 作者

    Innamaa Satu;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号