From the thermodynamic equilibrium properties of a two-level system with variable energy-level gap $\Delta$, and a careful distinction between the Gibbs relation $dE = T dS + (E/\Delta) d\Delta$ and the energy balance equation $dE = \delta Q^\leftarrow - \delta W^\to$, we infer some important aspects of the second law of thermodynamics and, contrary to a recent suggestion based on the analysis of an Otto-like thermodynamic cycle between two values of $\Delta$ of a spin-1/2 system, we show that a quantum thermodynamic Carnot cycle, with the celebrated optimal efficiency $1 - (T_{low}/T_{high})$, is possible in principle with no need of an infinite number of infinitesimal processes, provided we cycle smoothly over at least three (in general four) values of $\Delta$, and we change $\Delta$ not only along the isoentropics, but also along the isotherms, e.g., by use of the recently suggested maser-laser tandem technique. We derive general bounds to the net-work to high-temperature-heat ratio for a Carnot cycle and for the 'inscribed' Otto-like cycle, and represent these cycles on useful thermodynamic diagrams.
展开▼
机译:从具有可变能级间隙$ \ Delta $的两能级系统的热力学平衡特性,以及吉布斯关系$ dE = T dS +(E / \ Delta)d \ Delta $与能量平衡之间的仔细区别方程$ dE = \ delta Q ^ \ leftarrow-\ delta W ^ \ to $,我们推论出热力学第二定律的一些重要方面,并且与最近基于对两点之间类似奥托热力学循环的分析的建议相反/ spin-1 / 2系统的$ \ Delta $值,我们证明了量子热力学卡诺循环,其最佳效率为$ 1-(T_ {low} / T_ {high})$,原则上没有需要无限数量的无穷小过程,只要我们在$ \ Delta $的至少三个(通常是四个)值上平稳循环,并且不仅沿等熵线,还沿等温线更改$ \ Delta $,例如,通过使用最近建议的maser-laser串联技术。我们得出了卡诺循环和“内接”类奥托循环的网络与高温热比的一般界限,并在有用的热力学图中表示了这些循环。
展开▼