首页> 外文OA文献 >Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem
【2h】

Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem

机译:弱傅里叶-舒尔采样,隐藏子组问题和量子碰撞问题

摘要

Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.
机译:舒尔对偶性将量子态的许多副本分解为由分区标记的子空间,这种分解在整个量子信息理论中都有应用。在这里,我们考虑将Schur对偶应用于在隐藏子组问题的标准方法中区分陪集状态的问题。我们观察到,仅测量分区(此过程称为弱Schur抽样)就无法提供有关隐藏子组的信息。此外,我们表明,在相当笼统的假设下,即使是弱傅里叶采样和弱Schur采样的组合也无法识别隐藏的子组。我们还证明了通过弱Schur采样解决隐藏子组问题需要多少个共集态的严格边界,并且我们将此问题与碰撞问题的量子形式联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号