首页> 外文OA文献 >A method for calculating the imaginary part of the Hadamard Elementary function $G^{(1)}$ in static, spherically symmetric spacetimes
【2h】

A method for calculating the imaginary part of the Hadamard Elementary function $G^{(1)}$ in static, spherically symmetric spacetimes

机译:在静态球对称时空中计算Hadamard基本函数$ G ^ {(1)} $的虚部的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Whenever real particle production occurs in quantum field theory, the imaginary part of the Hadamard Elementary function $G^{(1)}$ is non-vanishing. A method is presented whereby the imaginary part of $G^{(1)}$ may be calculated for a charged scalar field in a static spherically symmetric spacetime with arbitrary curvature coupling and a classical electromagnetic field $A^{\mu}$. The calculations are performed in Euclidean space where the Hadamard Elementary function and the Euclidean Green function are related by $(1/2)G^{(1)}=G_{E}$. This method uses a $4^{th}$ order WKB approximation for the Euclideanized mode functions for the quantum field. The mode sums and integrals that appear in the vacuum expectation values may be evaluated analytically by taking the large mass limit of the quantum field. This results in an asymptotic expansion for $G^{(1)}$ in inverse powers of the mass $m$ of the quantum field. Renormalization is achieved by subtracting off the terms in the expansion proportional to nonnegative powers of $m$, leaving a finite remainder known as the ``DeWitt-Schwinger approximation.'' The DeWitt-Schwinger approximation for $G^{(1)}$ presented here has terms proportional to both $m^{-1}$ and $m^{-2}$. The term proportional to $m^{-2}$ will be shown to be identical to the expression obtained from the $m^{-2}$ term in the generalized DeWitt-Schwinger point-splitting expansion for $G^{(1)}$. The new information obtained with the present method is the DeWitt-Schwinger approximation for the imaginary part of $G^{(1)}$, which is proportional to $m^{-1}$ in the DeWitt-Schwinger approximation for $G^{(1)}$ derived in this paper.
机译:每当在量子场论中出现实际的粒子产生时,哈达玛基本函数$ G ^ {(1)} $的虚部就不会消失。提出了一种方法,其中可以针对具有任意曲率耦合的静态球对称时空和经典电磁场$ A ^ {(mu)$),为带电标量场计算$ G ^ {(1)} $的虚部。该计算在欧达木德空间中执行,其中Hadamard基本函数和欧几里德格林函数之间的关系为$(1/2)G ^ {(1)} = G_ {E} $。此方法对量子场的欧式模式函数使用4 ^ {th} $阶WKB近似。可以通过考虑较大的量子场质量极限来分析评估真空期望值中出现的众数和。这导致$ G ^ {(1)} $的渐进展开,其量子场的质量$ m $的逆幂。重整化是通过减去与$ m $的非负幂成比例的展开项来实现的,从而留下有限的余数,称为“ DeWitt-Schwinger近似”。$ G ^ {(1)}的DeWitt-Schwinger近似此处给出的$具有与$ m ^ {-1} $和$ m ^ {-2} $均成比例的项。与$ m ^ {-2} $成正比的项将显示为与在$ G ^ {的广义DeWitt-Schwinger点分解扩展中从$ m ^ {-2} $项获得的表达式相同。 )} $。通过本方法获得的新信息是$ G ^ {(1)} $虚部的DeWitt-Schwinger近似,它与$ G的DeWitt-Schwinger近似中的$ m ^ {-1} $成比例本文推导的^ {(1)} $。

著录项

  • 作者

    Herman, R;

  • 作者单位
  • 年度 1998
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号