首页> 外文OA文献 >Identification of Single- and Multiple-Class Specific Signature Genes from Gene Expression Profiles by Group Marker Index
【2h】

Identification of Single- and Multiple-Class Specific Signature Genes from Gene Expression Profiles by Group Marker Index

机译:通过组标记索引从基因表达谱中鉴定单类和多类特异性签名基因

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Informative genes from microarray data can be used to construct prediction model and investigate biological mechanisms. Differentially expressed genes, the main targets of most gene selection methods, can be classified as single- and multiple-class specific signature genes. Here, we present a novel gene selection algorithm based on a Group Marker Index (GMI), which is intuitive, of low-computational complexity, and efficient in identification of both types of genes. Most gene selection methods identify only single-class specific signature genes and cannot identify multiple-class specific signature genes easily. Our algorithm can detect de novo certain conditions of multiple-class specificity of a gene and makes use of a novel non-parametric indicator to assess the discrimination ability between classes. Our method is effective even when the sample size is small as well as when the class sizes are significantly different. To compare the effectiveness and robustness we formulate an intuitive template-based method and use four well-known datasets. We demonstrate that our algorithm outperforms the template-based method in difficult cases with unbalanced distribution. Moreover, the multiple-class specific genes are good biomarkers and play important roles in biological pathways. Our literature survey supports that the proposed method identifies unique multiple-class specific marker genes (not reported earlier to be related to cancer) in the Central Nervous System data. It also discovers unique biomarkers indicating the intrinsic difference between subtypes of lung cancer. We also associate the pathway information with the multiple-class specific signature genes and cross-reference to published studies. We find that the identified genes participate in the pathways directly involved in cancer development in leukemia data. Our method gives a promising way to find genes that can involve in pathways of multiple diseases and hence opens up the possibility of using an existing drug on other diseases as well as designing a single drug for multiple diseases.
机译:来自微阵列数据的信息基因可用于构建预测模型和研究生物学机制。差异表达基因是大多数基因选择方法的主要目标,可以分为单类和多类特异性特征基因。在这里,我们提出了一种基于组标记指数(GMI)的新颖基因选择算法,该算法直观,计算复杂度低,并且可以有效地识别两种类型的基因。大多数基因选择方法只能识别单类特异性特征基因,而不能轻易识别多类特异性特征基因。我们的算法可以从头检测基因多类特异性的某些条件,并利用一种新颖的非参数指标评估类之间的区分能力。即使样本量很小以及类别大小明显不同,我们的方法也有效。为了比较有效性和鲁棒性,我们制定了一种基于模板的直观方法,并使用了四个众所周知的数据集。我们证明了在分布不平衡的困难情况下,我们的算法优于基于模板的方法。此外,多类特异性基因是良好的生物标记,并在生物途径中起重要作用。我们的文献调查支持所提出的方法在中枢神经系统数据中识别独特的多类特定标记基因(较早时未报道与癌症有关)。它还发现了独特的生物标志物,表明肺癌亚型之间的内在差异。我们还将途径信息与多类特异性签名基因相关联,并交叉引用已发表的研究。我们发现,在白血病数据中,已鉴定的基因参与直接参与癌症发展的途径。我们的方法提供了一种寻找可能涉及多种疾病途径的基因的有前途的方法,因此为在其他疾病上使用现有药物以及为多种疾病设计单一药物提供了可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号