首页> 外文OA文献 >Prediction of enzymes and non-enzymes from protein sequences based on sequence derived features and PSSM matrix using artificial neural network
【2h】

Prediction of enzymes and non-enzymes from protein sequences based on sequence derived features and PSSM matrix using artificial neural network

机译:基于序列衍生特征和PSSM矩阵的人工神经网络预测蛋白质序列中的酶和非酶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem of predicting the enzymes and non-enzymes from the protein sequence information is still an open problem in bioinformatics. It is further becoming more important as the number of sequenced information grows exponentially over time. We describe a novel approach for predicting the enzymes and non-enzymes from its amino-acid sequence using artificial neural network (ANN). Using 61 sequence derived features alone we have been able to achieve 79 percent correct prediction of enzymes/non-enzymes (in the set of 660 proteins). For the complete set of 61 parameters using 5-fold cross-validated classification, ANN model reveal a superior model (accuracy = 78.79 plus or minus 6.86 percent, Q(pred) = 74.734 plus or minus 17.08 percent, sensitivity = 84.48 plus or minus 6.73 percent, specificity = 77.13 plus or minus 13.39 percent). The second module of ANN is based on PSSM matrix. Using the same 5-fold cross-validation set, this ANN model predicts enzymes/non-enzymes with more accuracy (accuracy = 80.37 plus or minus 6.59 percent, Q(pred) = 67.466 plus or minus 12.41 percent, sensitivity = 0.9070 plus or minus 3.37 percent, specificity = 74.66 plus or minus 7.17 percent).
机译:从蛋白质序列信息预测酶和非酶的问题仍然是生物信息学中的开放问题。随着序列化信息的数量随着时间呈指数增长,这一点变得越来越重要。我们描述了一种使用人工神经网络(ANN)从其氨基酸序列预测酶和非酶的新方法。仅使用61个序列衍生的特征,我们就可以实现79%正确的酶/非酶预测(在660种蛋白质中)。对于使用5折交叉验证分类的61个参数的完整集合,ANN模型显示了一个高级模型(精度= 78.79 +/- 6.86%,Q(pred)= 74.734 +/- 17.80%,灵敏度= 84.48 +/- 6.73%,特异性= 77.13上下浮动13.39%)。 ANN的第二个模块基于PSSM矩阵。使用相同的5倍交叉验证集,此ANN模型可以更准确地预测酶/非酶(准确性= 80.37上下6.59%,Q(pred)= 67.466上下12.41%,灵敏度= 0.9070上下负3.37%,特异性= 74.66负7.17%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号