首页> 外文OA文献 >Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy
【2h】

Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

机译:质子束电弧传递放射治疗中最大质子动能和患者产生的中子注量注意事项

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180° continuous arc proton therapy and for 180° split arc proton therapy (two 90° arcs) using CT# profiles from the Pinnacle™ (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.
机译:最近已经提出了几种用于质子治疗的紧凑质子加速器系统。对于这种加速器系统的发展而言,最重要的是治疗系统必须立即达到进入患者体内之前的质子最大动能。医用质子加速器所需的最大动能的常用值是250 MeV,但尚未证明该能量确实是治疗所有或大多数适合质子治疗的患者所必需的。本文将定量分析质子进入患者前的最大动能,以治疗给定百分比的旋转质子治疗患者所需的质子,并研究该能量阈值对紧凑型龙门架的成本和可行性的影响。安装了质子加速器处理系统。分析了接受IMRT治疗的患者的100项随机治疗计划。对于180°连续弧质子治疗和180°拆分弧质子治疗(两个90°弧),使用Pinnacle™(#成像)的CT#曲线获得了从患者表面到治疗体积远端的最大放射线长度。飞利浦医疗系统,麦迪逊,威斯康星州)治疗计划系统。在每种情况下,使用各种介质的质子范围表来计算即将进入患者之前质子的最大动能,这是治疗患者所必需的。另外,进行了蒙特卡罗模拟,以量化代表患者的水模体中的中子产生,其是质子治疗系统可达到的最大质子动能的函数。在这项研究中,刚要进入患者之前,需要动能为240 MeV的质子来治疗100%的患者。但是,结果表明90%的患者可以在198 MeV下接受治疗,而95%的患者可以在207 MeV下接受治疗。将质子动能从250 MeV降低到200 MeV,可以通过将水模中的单能笔形光束停止而产生的总中子能量通量降低2.3倍。如果牺牲了治疗小比例患者旋转疗法的能力,可能会大大降低紧凑型质子加速器对最大动能的要求。最大动能的减少以及中子产生的相应减少,可以降低成本并减轻紧凑型质子加速器处理设备的工程约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号