首页> 外文OA文献 >Clustering Predicts Memory Performance in Networks of Spiking and Non-Spiking Neurons
【2h】

Clustering Predicts Memory Performance in Networks of Spiking and Non-Spiking Neurons

机译:聚类预测尖峰和非尖峰神经元网络中的内存性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The problem we address in this paper is that of finding effective and parsimonious patterns of connectivity in sparse associative memories. This problem must be addressed in real neuronal systems, so that results in artificial systems could throw light on real systems. We show that there are efficient patterns of connectivity and that these patterns are effective in models with either spiking or non-spiking neurons. This suggests that there may be some underlying general principles governing good connectivity in such networks. We also show that the clustering of the network, measured by Clustering Coefficient, has a strong negative linear correlation to the performance of associative memory. This result is important since a purely static measure of network connectivity appears to determine an important dynamic property of the network.
机译:我们在本文中解决的问题是在稀疏的关联记忆中找到有效且简约的连接模式。必须在实际的神经元系统中解决此问题,以便人造系统的结果可以对实际系统有所启发。我们表明存在有效的连接模式,并且这些模式在带有尖峰或非尖峰神经元的模型中均有效。这表明可能存在一些基本原则来管理此类网络中的良好连接。我们还表明,通过聚类系数衡量的网络聚类与关联内存的性能具有很强的负线性相关性。该结果很重要,因为纯静态的网络连接度量似乎可以确定网络的重要动态属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号