首页> 外文期刊>Neural computation >Learning Beyond Finite Memory in Recurrent Networks of Spiking Neurons
【24h】

Learning Beyond Finite Memory in Recurrent Networks of Spiking Neurons

机译:在尖峰神经元的递归网络中学习有限记忆以外的知识

获取原文
获取原文并翻译 | 示例

摘要

We investigate possibilities of inducing temporal structures without fading memory in recurrent networks of spiking neurons strictly operating in the pulse-coding regime. We extend the existing gradient-based algorithm for training feedforward spiking neuron networks, SpikeProp (Bohte, Kok, & La Poutre, 2002), to recurrent network topologies, so that temporal dependencies in the input stream are taken into account. It is shown that temporal structures with unbounded input memory specified by simple Moore machines (MM) can be induced by recurrent spiking neuron networks (RSNN). The networks are able to discover pulse-coded representations of abstract information processing states coding potentially unbounded histories of processed inputs. We show that it is often possible to extract from trained RSNN the target MM by grouping together similar spike trains appearing in the recurrent layer. Even when the target MM was not perfectly induced in a RSNN, the extraction procedure was able to reveal weaknesses of the induced mechanism and the extent to which the target machine had been learned.
机译:我们调查诱导时间结构而不褪色尖峰神经元严格在脉冲编码方案中运行的递归网络的记忆的可能性。我们将用于训练前馈尖峰神经元网络SpikeProp(Bohte,Kok和La Poutre,2002)的现有基于梯度的算法扩展到递归网络拓扑,以便考虑输入流中的时间依赖性。结果表明,可以通过递归尖峰神经元网络(RSNN)来诱导具有由简单的摩尔机器(MM)指定的无界输入记忆的时间结构。该网络能够发现抽象信息处理状态的脉冲编码表示形式,这些状态信息对处理后的输入的潜在历史记录进行了无限制的编码。我们表明,通常可以通过将出现在递归层中的相似峰值序列组合在一起,从受过训练的RSNN中提取目标MM。即使当目标MM没有在RSNN中被完美地诱导时,提取过程也能够揭示所诱导机制的弱点以及对目标机器的了解程度。

著录项

  • 来源
    《Neural computation》 |2006年第3期|p.591-613|共23页
  • 作者

    Peter Tino; Ashely J. S. Mills;

  • 作者单位

    School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 人工智能理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号