首页> 外文OA文献 >A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0
【2h】

A New Method for Predicting the Subcellular Localization of Eukaryotic Proteins with Both Single and Multiple Sites: Euk-mPLoc 2.0

机译:一种预测具有单个和多个位点的真核蛋白亚细胞定位的新方法:Euk-mPLoc 2.0

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Information of subcellular locations of proteins is important for in-depth studies of cell biology. It is very useful for proteomics, system biology and drug development as well. However, most existing methods for predicting protein subcellular location can only cover 5 to 12 location sites. Also, they are limited to deal with single-location proteins and hence failed to work for multiplex proteins, which can simultaneously exist at, or move between, two or more location sites. Actually, multiplex proteins of this kind usually posses some important biological functions worthy of our special notice. A new predictor called “Euk-mPLoc 2.0” is developed by hybridizing the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify eukaryotic proteins among the following 22 locations: (1) acrosome, (2) cell wall, (3) centriole, (4) chloroplast, (5) cyanelle, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracell, (11) Golgi apparatus, (12) hydrogenosome, (13) lysosome, (14) melanosome, (15) microsome (16) mitochondria, (17) nucleus, (18) peroxisome, (19) plasma membrane, (20) plastid, (21) spindle pole body, and (22) vacuole. Compared with the existing methods for predicting eukaryotic protein subcellular localization, the new predictor is much more powerful and flexible, particularly in dealing with proteins with multiple locations and proteins without available accession numbers. For a newly-constructed stringent benchmark dataset which contains both single- and multiple-location proteins and in which none of proteins has pairwise sequence identity to any other in a same location, the overall jackknife success rate achieved by Euk-mPLoc 2.0 is more than 24% higher than those by any of the existing predictors. As a user-friendly web-server, Euk-mPLoc 2.0 is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/. For a query protein sequence of 400 amino acids, it will take about 15 seconds for the web-server to yield the predicted result; the longer the sequence is, the more time it may usually need. It is anticipated that the novel approach and the powerful predictor as presented in this paper will have a significant impact to Molecular Cell Biology, System Biology, Proteomics, Bioinformatics, and Drug Development.
机译:蛋白质亚细胞位置的信息对于细胞生物学的深入研究很重要。它对蛋白质组学,系统生物学和药物开发也非常有用。但是,大多数现有的预测蛋白质亚细胞定位的方法只能覆盖5至12个定位位点。而且,它们仅限于处理单位置蛋白,因此不能用于多重蛋白,其可以同时存在于两个或多个位置或在两个或多个位置之间移动。实际上,这种多重蛋白通常具有一些重要的生物学功能,值得我们特别注意。通过将基因本体信息,功能域信息和顺序进化信息通过三种不同的伪氨基酸组成模式进行杂交,开发了一种称为“ Euk-mPLoc 2.0”的新预测因子。它可用于鉴定以下22个位置中的真核蛋白:(1)顶体,(2)细胞壁,(3)质心,(4)叶绿体,(5)蓝藻,(6)细胞质,(7)细胞骨架, (8)内质网,(9)内体,(10)细胞外,(11)高尔基体,(12)氢体,(13)溶酶体,(14)黑素体,(15)微粒体(16)线粒体,(17)核,(18)过氧化物酶体,(19)质膜,(20)质体,(21)纺锤体和(22)液泡。与现有的预测真核蛋白亚细胞定位的方法相比,新的预测子功能更强大,更灵活,特别是在处理具有多个位置的蛋白质和没有可用登录号的蛋白质时。对于包含单位置和多位置蛋白质且在同一位置没有蛋白质与任何其他蛋白质具有成对序列同一性的新构建的严格基准数据集,Euk-mPLoc 2.0所实现的整体折刀成功率大于比任何现有预测指标高24%。作为用户友好的Web服务器,Euk-mPLoc 2.0可从http://www.csbio.sjtu.edu.cn/bioinf/euk-multi-2/免费访问。对于400个氨基酸的查询蛋白质序列,Web服务器将花费大约15秒钟来产生预测结果。序列越长,通常可能需要的时间就越长。可以预期的是,本文提出的新颖方法和强大的预测因子将对分子细胞生物学,系统生物学,蛋白质组学,生物信息学和药物开发产生重大影响。

著录项

  • 作者

    Chou, Kuo-Chen; Shen, Hong-Bin;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号