首页> 外文OA文献 >A High Productivity/Low Maintenance Approach to High-performance Computation for Biomedicine: Four Case Studies
【2h】

A High Productivity/Low Maintenance Approach to High-performance Computation for Biomedicine: Four Case Studies

机译:一种高效/低维护的生物医学高性能计算方法:四个案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rapid advances in high-throughput biotechnologies such as DNA microarrays and mass spectrometry have generated vast amounts of data ranging from gene expression to proteomics data. The large size and complexity involved in analyzing such data demand a significant amount of computing power. High-performance computation (HPC) is an attractive and increasingly affordable approach to help meet this challenge. There is a spectrum of techniques that can be used to achieve computational speedup with varying degrees of impact in terms of how drastic a change is required to allow the software to run on an HPC platform. This paper describes a high- productivity/low-maintenance (HP/LM) approach to HPC that is based on establishing a collaborative relationship between the bioinformaticist and HPC expert that respects the former's codes and minimizes the latter's efforts. The goal of this approach is to make it easy for bioinformatics researchers to continue to make iterative refinements to their programs, while still being able to take advantage of HPC. The paper describes our experience applying these HP/LM techniques in four bioinformatics case studies: (1) genome-wide sequence comparison using Blast, (2) identification of biomarkers based on statistical analysis of large mass spectrometry data sets, (3) complex genetic analysis involving ordinal phenotypes, (4) large-scale assessment of the effect of possible errors in analyzing microarray data. The case studies illustrate how the HP/LM approach can be applied to a range of representative bioinformatics applications and how the approach can lead to significant speedup of computationally intensive bioinformatics applications, while making only modest modifications to the programs themselves.
机译:高通量生物技术(例如DNA微阵列和质谱法)的迅速发展产生了从基因表达到蛋白质组学数据的大量数据。分析此类数据涉及的大型和复杂性需要大量的计算能力。高性能计算(HPC)是一种有吸引力且日益负担得起的方法,可以帮助应对这一挑战。就允许软件在HPC平台上运行的要求有多大的变化而言,有各种各样的技术可用于在不同程度的影响下实现计算加速。本文描述了HPC的高生产率/低维护(HP / LM)方法,该方法基于在生物信息学家和HPC专家之间建立尊重前者代码并最小化后者工作的合作关系。这种方法的目标是使生物信息学研究人员能够轻松地继续对其程序进行迭代改进,同时仍能够利用HPC的优势。本文介绍了我们将这些HP / LM技术应用到四个生物信息学案例研究中的经验:(1)使用Blast进行全基因组序列比较,(2)基于大型质谱数据集的统计分析识别生物标记,(3)复杂遗传涉及序表型的分析,(4)大规模评估微阵列数据分析中可能出现的错误的影响。案例研究说明了如何将HP / LM方法应用于一系列具有代表性的生物信息学应用程序,以及该方法如何在显着加快计算密集型生物信息学应用程序的同时,仅对程序本身进行适度的修改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号