首页> 外文OA文献 >Dynamics of the Methanogenic Archaeal Community during Plant Residue Decomposition in an Anoxic Rice Field Soil ▿
【2h】

Dynamics of the Methanogenic Archaeal Community during Plant Residue Decomposition in an Anoxic Rice Field Soil ▿

机译:缺氧稻田土壤甲烷分解过程中产甲烷古菌群落的动态▿

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Incorporation of plant residues strongly enhances the methane production and emission from flooded rice fields. Temperature and residue type are important factors that regulate residue decomposition and CH4 production. However, the response of the methanogenic archaeal community to these factors in rice field soil is not well understood. In the present experiment, the structure of the archaeal community was determined during the decomposition of rice root and straw residues in anoxic rice field soil incubated at three temperatures (15°C, 30°C, and 45°C). More CH4 was produced in the straw treatment than root treatment. Increasing the temperature from 15°C to 45°C enhanced CH4 production. Terminal restriction fragment length polymorphism analyses in combination with cloning and sequencing of 16S rRNA genes showed that Methanosarcinaceae developed early in the incubations, whereas Methanosaetaceae became more abundant in the later stages. Methanosarcinaceae and Methanosaetaceae seemed to be better adapted at 15°C and 30°C, respectively, while the thermophilic Methanobacteriales and rice cluster I methanogens were significantly enhanced at 45°C. Straw residues promoted the growth of Methanosarcinaceae, whereas the root residues favored Methanosaetaceae. In conclusion, our study revealed a highly dynamic structure of the methanogenic archaeal community during plant residue decomposition. The in situ concentration of acetate (and possibly of H2) seems to be the key factor that regulates the shift of methanogenic community.
机译:掺入植物残渣可以大大提高稻田中甲烷的产生和排放。温度和残留物类型是调节残留物分解和CH4产生的重要因素。但是,对于稻田土壤中产甲烷的古细菌群落对这些因素的反应尚不十分清楚。在本实验中,在三种温度(15°C,30°C和45°C)下孵育的缺氧稻田土壤中,稻根和稻草残留物的分解过程中确定了古细菌群落的结构。秸秆处理比根部处理产生更多的CH4。将温度从15°C升高到45°C可以提高CH4的产生。末端限制性片段长度多态性分析与16S rRNA基因的克隆和测序相结合显示,甲烷菌科在孵化早期发展,而甲烷藻科在后期更丰富。甲烷杆菌科和甲烷藻科似乎分别在15°C和30°C时具有更好的适应性,而嗜热的甲烷细菌和稻类I的产甲烷菌在45°C时显着增强。秸秆残留物促进了甲烷八叠球菌的生长,而根部残留物则有利于甲烷藻科。总而言之,我们的研究揭示了在植物残渣分解过程中产甲烷古细菌群落的高度动态结构。乙酸盐(可能还有H2)的原位浓度似乎是调节产甲烷菌群落迁移的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号