首页> 外文OA文献 >Model-based intelligence multi-objective globally optimization for HCCI engines
【2h】

Model-based intelligence multi-objective globally optimization for HCCI engines

机译:HCCI引擎基于模型的智能多目标全局优化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modern engines feature a considerable number of adjustable control parameters. With this increasing number of Degrees of Freedom (DoF) for engines, and the consequent considerable calibration effort required to optimize engine performance, traditional manual engine calibration or optimization methods are reaching their limits. An automated engine optimization approach is desired. In this paper, a self-learning evolutionary algorithm based multi-objective globally optimization approach for a Homogenous Charge Compression Ignition (HCCI) engine is developed. The performance of the HCCI engine optimizer is demonstrated by the co-simulation between an HCCI engine Simulink model and an Strength Pareto Evolutionary Algorithm 2 (SPEA2) based multi-objective optimizer developed in Java. The HCCI engine model is developed by integrating the physical gas exchange model, in-cylinder volume model and statistical combustion model. The model has been validated from 1500 rpm to 2250 rpm with different Indicated Mean Effective Pressure (IMEP). The model is able to simulate the performance of in-cylinder pressure, Indicated Specific Fuel Consumption (ISFC) and Indicated Specific Hydrocarbon (ISHC) emissions with acceptable accuracy in real-time within a wide engine operation window. The SPEA2 optimizer has been validated by the classic evaluation function SRN with constrains. The validation results show that the optimizer can find the Pareto Front of SRN efficiently. The introduced Intelligence optimization is an approach to optimize the engine ISFC and ISHC simultaneously by adjusting the engine actuators’ settings automatically through SPEA2. For this study, the HCCI engine actuators’ settings are Intake Valves Opening (IVO), Exhaust Valves Closing (EVC) and relative air to fuel ratio (λ). The co-simulation study and experimental validation results show that the intelligent multi-objective optimizer can find the optimal HCCI engine actuators’ settings with acceptable accuracy, and much lower time consumption than usual.
机译:现代发动机具有大量可调节的控制参数。随着发动机自由度(DoF)数量的增加,以及随之而来的优化发动机性能所需的大量校准工作,传统的手动发动机校准或优化方法已达到其极限。需要一种自动的发动机优化方法。本文提出了一种基于自学习进化算法的均质充量压缩点火(HCCI)发动机多目标全局优化方法。 HCCI引擎Simulink模型与用Java开发的基于强度帕累托进化算法2(SPEA2)的多目标优化器之间的协同仿真证明了HCCI引擎优化器的性能。 HCCI发动机模型是通过整合物理气体交换模型,缸内容积模型和统计燃烧模型而开发的。该模型已通过不同的指示平均有效压力(IMEP)在1500 rpm至2250 rpm的范围内验证。该模型能够在宽广的发动机运行窗口内以可接受的精度实时模拟缸内压力,指示比油耗(ISFC)和指示比碳氢化合物(ISHC)排放的性能。 SPEA2优化器已通过经典评估函数SRN(受约束)进行了验证。验证结果表明,优化器可以有效地找到SRN的帕累托前沿。引入的智能优化是一种通过SPEA2自动调整发动机执行器设置来同时优化发动机ISFC和ISHC的方法。在本研究中,HCCI发动机执行器的设置为进气门开启(IVO),排气门关闭(EVC)和相对空燃比(λ)。联合仿真研究和实验验证结果表明,智能多目标优化器可以以可接受的精度找到最佳的HCCI发动机执行器设置,并且所花费的时间比平时少得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号