首页> 外文OA文献 >Automated Pulmonary Artery Segmentation By Vessel Tracking In Low-Dose Computed Tomography Images
【2h】

Automated Pulmonary Artery Segmentation By Vessel Tracking In Low-Dose Computed Tomography Images

机译:在低剂量计算机断层扫描图像中通过血管跟踪自动进行肺动脉分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Low-dose computed tomography (CT) imaging provides a method for obtaining accurate anatomical information without the full radiation exposure inherent in standard CT protocols, and is primarily used in lung cancer screening. Segmentation of the pulmonary arteries from low-dose chest CT images is a vital first step in improving computer-aided detection of frequently missed pulmonary nodules near major arteries. This thesis presents the first fully automated method for segmenting the main pulmonary arterial trees in low-dose CT images. The correlation between the arterial and airway trees was used to develop an automated pulmonary artery seed point detector. The main basal pulmonary arteries are identified by searching for candidate vessels near known airways, using a progressive morphological opening method. The arteries are tracked into the lungs by means of a cylindrical vessel tracker that iteratively fits model cylinders to the CT image. Vessel bifurcations are detected by measuring the rate of change of vessel radii. Subsequent vessels are segmented by initiating new cylinder trackers at bifurcation points. Quantitative analysis of both the number of arteries and veins segmented, as well as the error per vessel, was accomplished with a novel evaluation metric called the Sparse Surface (SS) metric. The SS metric was developed to capture the details of the true vessel surface while reducing the ground-truth marking burden on the human user. This metric is a unique new tool for ground truth marking and segmentation validation, with particular importance in problems with complex geometries. The segmentation method and SS metric were applied to a dataset of seven CT images, and achieved an overall sensitivity of 0.62 and specificity of 0.90 of all manually identified vessels. The average root mean square error between the vessel surface and the segmentation surface was 0.63 mm, or less than 1 voxel. Additionally, seed points were detected automatically for a majority (80%) of cases with labeled airways. This method is an important first step towards robust pulmonary artery segmentation and artery/vein separation in low-dose chest CT, and is the first fully automated method designed for accomplishing this task.
机译:低剂量计算机断层扫描(CT)成像提供了一种在没有标准CT协议固有的完全放射线照射的情况下获得准确解剖信息的方法,并且主要用于肺癌筛查。从低剂量胸部CT图像分割肺动脉是改善计算机辅助对主要动脉附近经常遗漏的肺结节的检测的重要第一步。本文提出了第一种全自动的低剂量CT图像中主要肺动脉树分割方法。动脉和气道树之间的相关性被用于开发自动肺动脉种子点检测器。使用渐进的形态学开放方法,通过搜索已知气道附近的候选血管来识别主要的基底肺动脉​​。借助于圆柱状血管追踪器将动脉追踪到肺部,该追踪器可将模型圆柱体迭代地拟合到CT图像上。通过测量血管半径的变化率来检测血管分叉。通过在分叉点处启动新的气瓶追踪器来分割随后的船只。使用称为稀疏表面(SS)度量的新型评估度量,可以对动脉和静脉的分段数量以及每条血管的误差进行定量分析。 SS度量标准的开发是为了捕获真实血管表面的细节,同时减少人类使用者的地面标记负担。此度量标准是用于地面真相标记和分段验证的独特新工具,对于复杂几何形状的问题尤其重要。分割方法和SS度量应用于7张CT图像的数据集,在所有手动识别的血管中,总体敏感性为0.62,特异性为0.90。血管表面和分割表面之间的平均均方根误差为0.63 mm,或小于1体素。此外,对于大多数(80%)带有标记气道的病例,会自动检测出种子点。该方法是在低剂量胸部CT中实现稳健的肺动脉分割和动脉/静脉分离的重要的第一步,并且是第一个为完成此任务而设计的全自动方法。

著录项

  • 作者

    Wala Jeremiah;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号