首页> 外文OA文献 >SCALABLE DYNAMIC MULTI-RESOURCE ALLOCATION IN MULTICORE SYSTEMS
【2h】

SCALABLE DYNAMIC MULTI-RESOURCE ALLOCATION IN MULTICORE SYSTEMS

机译:多核系统中的可伸缩动态多资源分配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Designing chip multiprocessors (CMPs) that scale to more than a handful of cores is an important goal for the upcoming technology generations. A challenge to scalability is the fact that these cores will inevitably share hardware resources, whether it be on-chip storage, memory bandwidth, the chip’s power budget, etc. Efficiently allocating those shared resources across cores is critical to optimize CMP executions. Techniques proposed in the literature often rely on global, centralized mechanisms that seek to maximize system throughput. Global optimization may hurt scalability: as more cores are integrated on a die, the search space grows exponentially, making it harder to achieve optimal or even acceptable operating points at run-time without incurring significant overheads.In this thesis, we present XChange, a framework for scalable resource allocation in large-scale CMPs. Inspired by market mechanisms, which are widely used in real life to allocate social resources at scale, we propose to address the resource allocation problem in large-scale CMPs as a purely dynamic, largely distributed market framework. Each shared resource is assigned a virtual price, which changes over time to reflect its supply-demand relationship. Cores in the CMP act as market players: they seek to maximize their own utilities by bidding for shared resources within their budgets. Because each core works largely independently, the resource allocation becomes a scalable, mostly distributed decision-making process. Cores in the system are able to dynamically monitor and learn their own resource-performance relationship and bid accordingly—no prior knowledge of the workload characteristics is assumed.We show our market-based resource allocation mechanism delivers superior system efficiency and fairness against existing proposals. This approach is purely empirical, however, and thus it does not provide any guarantees on the loss of efficiency and fairness. It is well known, for example, that market mechanisms in equilibrium can sometimes be highly inefficient—this is known as Tragedy of Commons. Therefore, we study the theoretic properties of our market-based approach, and establish a bound on the loss of efficiency and fairness in the market-based resource allocation, by introducing two new metrics, market utility range (MUR) and market budget range (MBR). Further, guided by such theoretic foundations, we propose ReBudget, a budget re-assignment technique that is able to systematically trade off efficiency and fairness in an adjustable manner.In the process of formulating our XChange framework, we propose novel mechanisms to support fine-grain resource management. Specifically, we propose SWAP, a scalable and fine-grain cache management technique that seamlessly combines set and way partitioning. By cooperatively managing cache ways and sets, SWAP (“Set and WAy Partitioning”) can successfully provide hundreds of fine-grained cache partitions for the manycore era. We implement SWAP as a user-space management thread on Cavium’s ThunderX, a real server-grade 48-core processor, and we show that SWAP significantly improves system throughput by twice as much speedup as what we can obtain by using only ThunderX’s way partitioning mechanism. This was a collaboration with Cavium engineers.
机译:设计可扩展至多个内核的芯片多处理器(CMP)是下一代技术的重要目标。可伸缩性面临的挑战是,这些内核将不可避免地共享硬件资源,无论是片上存储,内存带宽,芯片的功率预算等。在内核之间有效分配这些共享资源对于优化CMP执行至关重要。文献中提出的技术通常依赖于寻求最大化系统吞吐量的全局集中式机制。全局优化可能会损害可伸缩性:随着越来越多的内核集成到裸片上,搜索空间呈指数增长,这使得在运行时难以获得最佳甚至可接受的工作点而又不产生大量开销的情况。大型CMP中可伸缩资源分配的框架。受现实生活中广泛使用的大规模分配社会资源的市场机制的启发,我们建议将大型CMP中的资源分配问题作为一个纯粹动态,分布广泛的市场框架来解决。每个共享资源都分配有一个虚拟价格,该价格随时间变化以反映其供求关系。 CMP的核心扮演着市场参与者的角色:他们通过竞标预算内的共享资源来寻求最大化自己的效用。因为每个核心在很大程度上独立工作,所以资源分配成为可伸缩的,主要是分布式的决策过程。系统中的核心能够动态监视和学习它们自己的资源性能关系并进行相应的出价-无需事先了解工作负载特征。我们证明了基于市场的资源分配机制可提供出色的系统效率和相对于现有建议的公平性。但是,这种方法纯粹是经验性的,因此不能为效率和公平性的损失提供任何保证。例如,众所周知,均衡中的市场机制有时可能效率很低-这就是公地悲剧。因此,我们研究了基于市场的方法的理论特性,并通过引入两个新的指标市场效用范围(MUR)和市场预算范围( MBR)。此外,在这种理论基础的指导下,我们提出了ReBudget,这是一种预算重新分配技术,能够以可调的方式系统地权衡效率和公平性。在制定XChange框架的过程中,我们提出了新颖的机制来支持精细化粮食资源管理。具体来说,我们提出了SWAP,这是一种可伸缩的细粒度缓存管理技术,可无缝组合集合和方式分区。通过协作管理缓存方式和集合,SWAP(“集合和等待分区”)可以成功地为多核时代提供数百个细粒度的缓存分区。我们将SWAP作为Cavium ThunderX(一个真正的服务器级48核处理器)上的用户空间管理线程来实现,并且我们证明SWAP显着提高了系统吞吐量,其提速是仅使用ThunderX的方式分区机制所能获得的两倍。 。这是与Cavium工程师的合作。

著录项

  • 作者

    Wang Xiaodong;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号