首页> 外文OA文献 >Essays On The Specification Testing For Dynamic Asset Pricing Models
【2h】

Essays On The Specification Testing For Dynamic Asset Pricing Models

机译:动态资产定价模型规范测试论文

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation consists of three essays on the subjects of specification testing on dynamic asset pricing models. In the first essay (with Yongmiao Hong), "A Simulation Test for ContinuousTime Models", we propose a simulation method to implement Hong and Li's (2005) s transition density-based test for continuous-time models. The idea is to simulate a sequence of dynamic probability integral transforms, which is the key ingredient of Hong and Li's (2005) test. The proposed procedure is generally applicable s whether or not the transition density of a continuous-time model has a closed form and is simple and computationally inexpensive. A Monte Carlo study shows that the proposed simulation test has very similar sizes and powers to the original Hong and Li's (2005) test. Furthermore, the performance of the simulation test s is robust to the choice of the number of simulation iterations and the number of discretization steps between adjacent observations. In the second essay (with Yongmiao Hong), "A Specification Test for Stock Return Models", we propose a simulation-based specification testing method applicable to stochastic volatility models, based on Hong and Li (2005) and Johannes et al. (2008). We approximate a dynamic probability integral transform in Hong and Li's s (2005) density forecasting test, via the particle filters proposed by Johannes et al. (2008). With the proposed testing method, we conduct a comprehensive empirical study on some popular stock return models, such as the GARCH and stochastic volatility models, using the S&P 500 index returns. Our empirical analysis shows that all models are misspecified in terms of density forecast. Among models considered, however, the stochastic volatility models perform relatively well in both in- and out-of-sample. We also find that modeling the leverage effect provides a substantial improvement in the log stochastic volatility models. Our value-at-risk performance analysis results also support stochastic volatility models rather than GARCH models. In the third essay (with Yongmiao Hong), "Option Pricing and Density Forecast Performances of the Affine Jump Diffusion Models: the Role of Time-Varying Jump Risk Premia", we investigate out-of-sample option pricing and density forecast performances for the a¢ ne jump diffusion (AJD) models, using the S&P 500 stock index and the associated option contracts. In particular, we examine the role of time-varying jump risk premia in the AJD specifications. For comparison purposes, nonlinear asymmetric GARCH models are also considered. To evaluate density forecasting performances, we extend Hong and Li's (2005) specification s testing method to be applicable to the famous AJD class of models, whether or not model-implied spot volatilities are available. For either case, we develop (i) the Fourier inversion of the closed-form conditional characteristic function and (ii) the Monte Carlo integration based on the particle filters proposed by Johannes et al. (2008). Our empirical analysis shows strong evidence in favor of time-varying jump risk premia in pricing cross-sectional options over time. However, for density forecasting performances, we could not find an AJD specification that successfully reconcile the dynamics implied by both time-series and options data.
机译:本文由三篇关于动态资产定价模型的规格测试主题的论文组成。在第一篇文章中(与洪永iao合作),“连续时间模型的模拟测试”,我们提出了一种模拟方法,以实现Hong和Li(2005)基于连续时间模型的过渡密度测试。这个想法是模拟一系列动态概率积分变换,这是Hong and Li(2005)检验的关键要素。所提出的过程通常适用于连续时间模型的转换密度是否具有封闭形式且简单且计算便宜的情况。蒙特卡洛的一项研究表明,拟议的模拟测试与原始的Hong and Li(2005)测试具有非常相似的大小和功效。此外,模拟测试的性能对于选择模拟迭代次数和相邻观测值之间离散化步骤的数量具有鲁棒性。在第二篇文章中(与洪永iao合着),“基于股票收益模型的规格测试”,我们基于Hong和Li(2005)和Johannes等人提出了一种适用于随机波动率模型的基于仿真的规格测试方法。 (2008)。通过Johannes等人提出的粒子滤波器,我们在Hong和Li(2005)的密度预测测试中近似了一个动态概率积分变换。 (2008)。通过提出的测试方法,我们使用标普500指数回报率对一些流行的股票回报率模型(例如GARCH和随机波动率模型)进行了全面的实证研究。我们的经验分析表明,所有模型在密度预测方面均被错误指定。但是,在考虑的模型中,随机波动率模型在样本内和样本外均表现相对较好。我们还发现,对杠杆效应进行建模可大大改善对数随机波动率模型。我们的风险价值绩效分析结果还支持随机波动率模型而不是GARCH模型。在第三篇文章中(与洪永iao合作),“仿射跳跃扩散模型的期权定价和密度预测性能:随时间变化的跳跃风险溢价的作用”,我们调查了样本外期权定价和密度预测性能。跳跃扩散(AJD)模型,使用标准普尔500股指和相关的期权合约。特别是,我们研究了时变跳跃风险溢价在AJD规范中的作用。为了进行比较,还考虑了非线性非对称GARCH模型。为了评估密度预测性能,我们扩展了Hong和Li(2005)规范的测试方法,以适用于著名的AJD类模型,无论是否存在模型隐含点波动率。对于这两种情况,我们都会开发(i)闭式条件特征函数的傅立叶反演,以及(ii)基于Johannes等人提出的粒子滤波器的蒙特卡洛积分。 (2008)。我们的经验分析显示,有力的证据表明,随着时间的推移,横截面期权定价中时变跳跃风险溢价得到了支持。但是,对于密度预测性能,我们找不到能够成功协调时间序列和期权数据所隐含的动态的AJD规范。

著录项

  • 作者

    Yun Jaeho;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号