首页> 外文OA文献 >Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect Devices
【2h】

Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect Devices

机译:显微光学表面的快速可扩展制造及其在光学互连器件中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of optical interconnects is a promising solution to the increasing demand for high speed mass data transmission used in integrated circuits as well as device to device data transfer applications. For the purpose, low cost polymer waveguides are a popular choice for routing signal between devices due to their compatibility with printed circuit boards. In optical interconnect, coupling from an external light source to such waveguides is a critical step, thus a variety of couplers have been investigated such as grating based couplers [1,2], evanescent couplers [3], and embedded mirrors [4–6].udThese couplers are inherently micro-optical components which require fast and scalable fabrication for mass production with optical quality surfaces/structures. Low NA laser direct writing has been used for fast fabrication of structures such as gratings and Fresnel lenses using a linear laser direct writing scheme, though the length scale of such structures are an order of magnitude larger than the spot size of the focused laser of the tool. Nonlinear writing techniques such as with 2-photon absorption offer increased write resolution which makes it possible to fabricate sub-wavelength structures as well as having a flexibility in feature shape. However it does not allow a high speed fabrication and in general are not scalable due to limitations of speed and area induced by the tool’s high NA optics. udTo overcome such limitations primarily imposed by NA, we propose a new micro-optic fabrication process which extends the capabilities of 1D, low NA, and thus fast and scalable, laser direct writing to fabricate a structure having a length scale close to the tool's spot size, for example, a mirror based and 45 degree optical coupler with optical surface quality.udThe newly developed process allows a high speed fabrication with a write speed of 2600 mm²/min by incorporating a mask based lithography method providing a blank structure which is critical to creating a 45 degree slope to form the coupler surface. In this method, instead of using an entire exposure in a pixelated manner, only a portion of the Gaussian profile is used, allowing a reduced surface roughness and better control of the surface shape than previously possible with this low NA beam. The surface figure of the mirror is well controlled below 0.04 waves in root-mean-square (RMS) at 1.55 μm wavelength, with mirror angle of 45±1 degrees.udThe coupling efficiency is evaluated using a set of polymer waveguides fabricated on the same substrate as the complete proof of concept device. Device insertion loss was measured using a custom built optical test station and a detailed loss analysis was completed to characterize the optical coupling efficiency of the mirror. Surface roughness and angle were also experimentally confirmed. This process opens up a pathway towards large volume fabrication of free-form and high aspect ratio optical components which have not yet pursued, along with well-defined optical structures on a single substrate. udIn this dissertation, in Chapter 1, we provide an overview of optical surface fabrication in conjunction with current state of the art on fabrication of free form surfaces in macro and microscopic length scale. The need for optical interconnects is introduced and fabrication methods of micro-optical couplers are reviewed in Chapter 2. In Chapter 3, the complete fabrication process of a mirror based coupler is presented including a custom alignment procedure. In Chapter 4, we provide the integration procedure of the optical couplers with waveguides. In Chapter 5, the alignment of two-lithographic methods is discussed. In Chapter 6, we provide the fabrication procedure used for the waveguides. In Chapter 7, the experimental evaluation and testing of the optical coupler is described. We present a custom test station used for angle verification and optical coupler efficiency measurement. In Chapter 8, a detailed loss analysis of the device is presented including suggestions for future reductions in loss. Conclusions and future work considerations are addressed in Chapter 9.
机译:光学互连的使用是解决集成电路和设备间数据传输应用中对高速海量数据传输日益增长的需求的有前途的解决方案。为此,由于低成本聚合物波导与印刷电路板的兼容性,因此它们是在设备之间路由信号的普遍选择。在光学互连中,从外部光源到此类波导的耦合是至关重要的一步,因此已研究了各种耦合器,例如基于光栅的耦合器[1,2],van逝耦合器[3]和嵌入式反射镜[4–6]这些耦合器本质上是微光学组件,需要快速且可扩展的制造才能大规模生产具有光学质量的表面/结构。低NA激光直接写入已被用于使用线性激光直接写入方案快速制造诸如光栅和菲涅耳透镜之类的结构,尽管此类结构的长度尺度比激光的聚焦激光器的光斑尺寸大一个数量级。工具。诸如具有2-光子吸收的非线性写入技术提供了增加的写入分辨率,这使得可以制造亚波长结构并且具有特征形状的灵活性。但是,由于该工具的高NA光学器件所引起的速度和面积的限制,它不允许高速制造,并且通常无法扩展。 ud为了克服主要由NA带来的此类限制,我们提出了一种新的微光学制造工艺,该工艺扩展了1D,低NA的功能,并因此实现了快速,可扩展的激光直接写入,以制造长度范围接近工具尺寸的结构。光点大小,例如基于反射镜的45度光学耦合器,具有光学表面质量。 ud新开发的工艺通过结合基于掩模的光刻方法提供了空白结构,从而可以以2600mm²/ min的写入速度进行高速制造。对于形成45度斜度以形成耦合器表面至关重要。在这种方法中,不是以像素化方式使用整个曝光,而是仅使用了一部分高斯轮廓,与以前使用此低NA光束相比,可以降低表面粗糙度并更好地控制表面形状。在1.55μm波长,镜面角度为45±1度的情况下,可将镜的表面图很好地控制在均方根(RMS)的0.04波以下。 ud使用一组在其上制造的聚合物波导来评估耦合效率。与概念验证设备的完整衬底相同。使用定制的光学测试台测量设备的插入损耗,并完成详细的损耗分析以表征反射镜的光学耦合效率。还通过实验确认了表面粗糙度和角度。该工艺为在单一基板上实现清晰定义的光学结构以及大批量制造尚未追求的自由形式和高深宽比光学组件开辟了道路。在本文的第一章中,我们结合宏观和微观长度尺度上的自由曲面的制造现状,结合光学技术的现状概述了光学表面的制造。介绍了对光学互连的需求,并在第2章中介绍了微光耦合器的制造方法。在第3章中,介绍了基于镜的耦合器的完整制造过程,其中包括定制的对准程序。在第四章中,我们提供了带有波导的光耦合器的集成过程。在第5章中,讨论了两种光刻方法的对准。在第6章中,我们提供了用于波导的制造过程。在第7章中,介绍了光耦合器的实验评估和测试。我们提供了一个定制测试站,用于角度验证和光耦合器效率测量。在第8章中,将详细介绍该设备的损耗分析,包括有关未来减少损耗的建议。结论和将来的工作考虑在第9章中讨论。

著录项

  • 作者

    Summitt Christopher Ryan;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号