首页> 外文OA文献 >Providing quality-of-service guarantees in multi-service wireless networks
【2h】

Providing quality-of-service guarantees in multi-service wireless networks

机译:在多服务无线网络中提供服务质量保证

摘要

Providing quality of service (QoS) guarantees over wireless packet networks poses a host of technical challenges that are not present in wireline networks. One of the key issues is how to account for the characteristics of the time-varying wireless channel and for the impact of link-layer error control in the provisioning of packet-level QoS. In this dissertation, we accommodate both aspects in analyzing the packet loss and delay performance over a wireless link. We also propose novel techniques for quantifying the wireless effective bandwidth, defined as the minimum amount of bandwidth that needs to be allocated to ensure a given level of QoS. These techniques are essential to on-line connection admission control (CAC) and capacity dimensioning in multiservice wireless networks with QoS support. To analyze the loss and delay performance, we consider a wireless link whose capacity fluctuates according to a fluid version of Gilbert-Elliot channel model. Incoming traffic sources are modeled with on-off fluid processes, which capture the bursty nature of network traffic. The packet loss performance is analyzed for the cases of a single and multiplexed traffic streams. For the single-stream case, we derive the packet loss rate (PLR) due to buffer overflow at the sender side of the wireless link. We also obtain a closed-form approximation for the corresponding wireless effective bandwidth. In the case of multiplexed streams, we obtain a good approximation for the PLR using the Chernoff-Dominant Eigenvalue (CDE) approach. The delay performance is analyzed via two distinct yet complementary approaches: fluid queueing analysis and discrete-time analysis, each being advantageous in analytic tractability and accuracy, respectively. The fluid approach is used to derive the packet delay distribution via two different approaches: uniformization and Laplace transform. Using the analytic results, we investigate the packet discard rate at the receiver, which is particularly important for delay-sensitive traffic. The delay distribution is further used to quantify the wireless effective bandwidth under a given delay guarantee. Numerical results and simulations are used to verify the adequacy of our analysis and to study the impact of error control on the allocation of bandwidth for guaranteed packet loss and delay performance. Finally, we use discrete-time analysis to quantify the mean delay experienced by a Markovian source over a wireless channel. In this case, the wireless link implements the selective-repeat automatic-repeat-request (SR ARQ) scheme for retransmission of erroneous packets. We obtain good approximations of the total mean delay, which consists of transport and resequencing delays. The transport delay, in turn, consists of queueing and transmission delays. The exact probability generating function (PGF) of the queue length under "ideal" SR ARQ is obtained and combined with the retransmission delay to obtain the mean transport delay. For the resequencing delay, the analysis is performed under the assumptions of heavy traffic and small window sizes (relative to the channel sojourn times). We show that ignoring the autocorrelations between packet interarrival times or the time-varying nature of the channel state can lead to significant underestimation of the delay performance, particularly at high channel error rates.
机译:通过无线分组网络提供服务质量(QoS)保证提出了许多有线网络中不存在的技术挑战。关键问题之一是如何考虑时变无线信道的特性以及链路层错误控制在提供数据包级QoS中的影响。在本文中,我们在分析无线链路上的丢包和延迟性能时都考虑了这两个方面。我们还提出了用于量化无线有效带宽的新颖技术,无线有效带宽定义为需要分配以确保给定QoS水平的最小带宽。这些技术对于具有QoS支持的多服务无线网络中的在线连接允许控制(CAC)和容量确定至关重要。为了分析丢失和延迟性能,我们考虑一条无线链路,其容量根据吉尔伯特-艾略特信道模型的流动版本而波动。传入流量源使用开/关流体过程建模,该过程捕获了网络流量的突发性。针对单个和多路复用业务流的情况分析了丢包性能。对于单流情况,由于无线链路发送方的缓冲区溢出,我们推导了丢包率(PLR)。我们还获得了对应的无线有效带宽的闭式近似值。在多路复用流的情况下,我们使用Chernoff主特征值(CDE)方法获得了PLR的良好近似值。通过两种截然不同但互补的方法来分析延迟性能:流体排队分析和离散时间分析,它们分别在分析可处理性和准确性上均具有优势。流体方法用于通过两种不同的方法得出数据包延迟分布:均匀化和拉普拉斯变换。使用分析结果,我们研究了接收器的数据包丢弃率,这对于时延敏感的流量尤其重要。延迟分布还用于在给定的延迟保证下量化无线有效带宽。数值结果和仿真用于验证我们的分析是否足够,并研究差错控制对带宽分配的影响,以确保丢包和延迟性能。最后,我们使用离散时间分析来量化马尔可夫源在无线信道上经历的平均延迟。在这种情况下,无线链路实施选择性重复自动重复请求(SR ARQ)方案以重发错误的数据包。我们获得了总平均延迟的良好近似值,其中包括传输延迟和重新排序延迟。传输延迟又包括排队和传输延迟。获得“理想” SR ARQ下队列长度的精确概率生成函数(PGF),并将其与重传延迟组合以获得平均传输延迟。对于重排序延迟,分析是在业务量大和窗口大小小(相对于信道停留时间)的假设下进行的。我们表明,忽略数据包到达时间之间的自相关性或信道状态的时变性质会导致延迟性能的明显低估,尤其是在高信道错误率的情况下。

著录项

  • 作者

    Kim Jeong Geun;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号