首页> 外文OA文献 >Miro's GTPase Domains Execute Anterograde and Retrograde Axonal Mitochondrial Transport and Control Morphology
【2h】

Miro's GTPase Domains Execute Anterograde and Retrograde Axonal Mitochondrial Transport and Control Morphology

机译:米罗的GTPase域执行顺行和逆行轴突线粒体运输和控制形态。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Microtubule-based mitochondrial transport into dendrites and axons is vital for sustaining neuronal function. Transport along microtubules proceeds in a series of plus- and minus-end directed movements facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective long distance transport remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of either antero- or retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We concluded that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport. To determine how Miro achieves this control mechanistically, we introduced point mutations that render each GTPase either constitutively active or inactive. Expression of either first GTPase mutant impaired antero- (inactive) or retrograde motor movements (active) in a direction dependent manner. The active state of the second GTPase domain up-regulated the number of consecutive kinesin motions during anterograde transport but impaired kinesin transport biases while the inactive second GTPase state impaired transport in either direction. Together, these data suggest that Miro's first GTPase domain is major factor that controls the execution of either the antero- or retrograde directional program while Miro's second GTPase may provide a signal that supports or disfavors transport. In addition, the active state of the first and the second GTPase domain increased the length of stationary mitochondria but only the first GTPase domain modified motile mitochondrial lengths. Overexpression of these mutations generated opposing effects. We conclude that both domains control antero- and retrograde transport in a switch-like manner.
机译:基于微管的线粒体转运到树突和轴突对于维持神经元功能至关重要。沿微管的运输过程是由驱动蛋白和动力蛋白马达推动的一系列正负方向运动。如何控制对立运动以实现有效的长距离运输仍不清楚。先前的研究表明,保守的线粒体GTPase Miro是线粒体转运到轴突和树突中所必需的。为了直接检查Miro对驱动蛋白和/或动力蛋白介导的线粒体运动的重要性,我们通过对Miro进行基因操作,对果蝇果蝇运动轴突中GFP标记的线粒体的运动进行了实时成像。果蝇米罗(dMiro)的丧失通过选择性地削弱驱动蛋白或动力蛋白介导的运动而降低了前线或逆行线粒体运输的有效性,具体取决于净运输的方向。在这两种情况下,短暂的静止阶段的持续时间均按比例增加。 dMiro的过表达(OE)也削弱了线粒体运输的有效性。最后,dMiro的丢失和OE通过机械上独立的途径改变了轴突中线粒体的长度。我们得出的结论是,dMiro通过根据线粒体的程序化传输方向扩展驱动蛋白和达因马达的生产力,从而促进了有效的前后线粒体运输。为了确定Miro如何以机械方式实现此控制,我们引入了点突变,使每个GTPase组成性或非活性。第一个GTPase突变体的表达以方向依赖的方式损害了前体(无活动)或逆行运动(活动)。第二个GTPase域的活跃状态上调顺顺性运输过程中连续的驱动蛋白运动的数量,但驱动蛋白的运输偏见受损,而第二个GTPase处于非活性状态则破坏了任一方向的运输。总之,这些数据表明,Miro的第一个GTPase结构域是控制逆向或逆向定向程序的执行的主要因素,而Miro的第二个GTPase可能提供支持或不利于运输的信号。另外,第一和第二GTP酶结构域的活性状态增加了固定线粒体的长度,但是仅第一GTP酶结构域修饰了运动性线粒体的长度。这些突变的过表达产生相反的作用。我们得出的结论是,这两个域都以类似开关的方式控制前后转运。

著录项

  • 作者

    Russo Gary John;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号