...
首页> 外文期刊>The Journal of Neuroscience: The Official Journal of the Society for Neuroscience >Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport.
【24h】

Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport.

机译:果蝇Miro是顺行和逆行轴突线粒体运输所必需的。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Microtubule-based transport of mitochondria into dendrites and axons is vital for sustaining neuronal function. Transport along microtubule tracks proceeds in a series of plus and minus end-directed movements that are facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective transport over large distances remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites and serves as a Ca(2+) sensor that controls mitochondrial mobility. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live-imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of both anterograde and retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. Net anterogradely transported mitochondria exhibited reduced kinesin- but normal dynein-mediated movements. Net retrogradely transported mitochondria exhibited much shorter dynein-mediated movements, whereas kinesin-mediated movements were minimally affected. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We suggest that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport.
机译:基于微管的线粒体向树突和轴突的运输对于维持神经元功能至关重要。沿着微管轨道的运输以一系列正负端向运动进行,这由动力蛋白和动力蛋白马达促进。如何控制对立运动以实现长距离有效运输仍然不清楚。以前的研究表明,保守的线粒体GTPase Miro是线粒体运输到轴突和树突中所必需的,并且作为控制线粒体活动性的Ca(2+)传感器。为了直接检查Miro对驱动蛋白和/或动力蛋白介导的线粒体运动的重要性,我们通过对Miro进行遗传操作,对果蝇果蝇运动轴突中GFP标记的线粒体的运动进行了实时成像。果蝇米罗(dMiro)的损失通过选择性削弱驱动蛋白或动力蛋白介导的运动而降低了顺行和逆行线粒体运输的有效性,具体取决于净运输的方向。净顺行转运线粒体显示出减少的驱动蛋白,但正常的动力蛋白介导的运动。净逆行运输的线粒体表现出短得多的动力蛋白介导的运动,而驱动蛋白介导的运动受到的影响最小。在这两种情况下,短暂的静止阶段的持续时间均按比例增加。 dMiro的过表达(OE)也削弱了线粒体运输的有效性。最后,dMiro的丢失和OE通过机械分离的途径改变了轴突中线粒体的长度。我们建议dMiro通过根据线粒体的程序化传输方向扩展驱动蛋白和达因马达的生产力来促进有效的前后线粒体运输。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号