首页> 外文OA文献 >Gas-phase Photoelectron Spectroscopy and Computational Studies of Metal-thiolate Interactions: Implications to Biological Electron Transfer
【2h】

Gas-phase Photoelectron Spectroscopy and Computational Studies of Metal-thiolate Interactions: Implications to Biological Electron Transfer

机译:气相光电子能谱和金属硫醇盐相互作用的计算研究:对生物电子转移的影响。

摘要

The research outlined in this dissertation focuses on understanding the role of metal-sulfur interactions as applied to bioinorganic and organometallic systems. This metal-sulfur interaction is analyzed using both gas-phase photoelectron spectroscopy (PES) and density functional theory (DFT). Gas-phase photoelectron spectroscopy is the most direct probe of electronic structure and is used in these studies to probe the molecular orbital energy levels of these model compounds, giving rise to an understanding of the metal and sulfur orbital interactions and characters (i.e. is an orbital primarily metal or sulfur based). Using density functional theory, orbital energies, overlap, and characters can be calculated and complement the PES experiments allowing for a detailed understanding of the electronic structure. The first part of my dissertation explains the design and implementation of a dual source gas-phase ultraviolet/X-ray photoelectron spectrometer (UPS/XPS). This gas-phase UPS/XPS can be used to quantify the bonding/antibonding character of frontier molecular orbitals, with specific applications to metal-sulfur interactions, allowing for a thorough analysis of the metal-sulfur interaction. The second part of the dissertation explores using model complexes, of the type Cp₂V(dithiolate) (where Cp is cyclopentadienyl and dithiolate is 1,2-ethenedithiolate or 1,2-benzenedithiolate), along with PES and DFT calculations to investigate the role of the pyranopterindithiolate cofactor and the d¹ electron configuration in modulating the redox potential and electron transfer in the active sites of molybdenum enzymes. This study shows that the d¹ electronic configuration offers a low energy electron transfer pathway for the reoxidation of the active site molybdenum center. The third part of the dissertation explores the use of model compounds that specifically focus on iron-thiolate interactions in biological systems, and the effect of electronic energy matching and sterics on the oxidation potential of this interaction. This study has shown that the metal-sulfur interaction is sensitive to the orientation of the thiolate ligand, and that during oxidation an “electronic-buffering effect” makes assigning a formal oxidation state to the metal center almost meaningless. All of these studies illustrate how the thiolate ligand can modulate the electron density and oxidation potential of the metal-sulfur interaction and the implication of this interaction to biological electron transfer.
机译:本文概述的研究重点是理解金属硫相互作用在生物无机和有机金属体系中的作用。使用气相光电子能谱(PES)和密度泛函理论(DFT)来分析这种金属-硫相互作用。气相光电子能谱是最直接的电子结构探针,在这些研究中用于探测这些模型化合物的分子轨道能级,从而使人们对金属和硫的轨道相互作用和特性有了更深入的了解(即,是一个轨道主要基于金属或硫)。利用密度泛函理论,可以计算出轨道能量,重叠和特征,并补充了PES实验,从而可以对电子结构进行详细的了解。论文的第一部分介绍了双源气相紫外/ X射线光电子能谱仪(UPS / XPS)的设计与实现。这种气相UPS / XPS可以用于量化前沿分子轨道的键合/反键合特性,特别适用于金属-硫相互作用,从而可以对金属-硫相互作用进行全面分析。论文的第二部分使用模型复合物(Cp为环戊二烯基,二硫醇盐为1,2-乙二硫醇盐或1,2-苯二硫醇盐)探索模型配合物,并通过PES和DFT计算来研究吡喃二硫代磺酸盐辅因子和d 1电子构型在调节氧化还原电位和电子在钼酶活性位点的转移。该研究表明,d 1电子构型为活性位点钼中心的再氧化提供了一种低能电子转移途径。论文的第三部分探讨了模型化合物的使用,这些化合物特别关注生物系统中硫铁盐的相互作用,以及电子能量匹配和空间位阻对这种相互作用的氧化电位的影响。这项研究表明,金属与硫的相互作用对硫醇盐配体的取向敏感,并且在氧化过程中,“电子缓冲效应”使得将正式的氧化态分配给金属中心几乎没有意义。所有这些研究说明了硫醇盐配体如何调节金属与硫相互作用的电子密度和氧化电位,以及这种相互作用对生物电子转移的影响。

著录项

  • 作者

    Cranswick Matthew A;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号