首页> 外文OA文献 >New Geometric Approaches to Finite Temperature String Theory
【2h】

New Geometric Approaches to Finite Temperature String Theory

机译:有限温度弦理论的新几何方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In quantum field theory a system at finite temperature can equivalently be viewed as having a compactified dimension. This situation carries over into string theory and leads to thermal duality, which relates the physics of closed strings at temperature T to the physics at the inverse temperature 1/T. Unfortunately, the classical definitions of thermodynamic quantities such as entropy and specific heat are not invariant under the thermal duality symmetry. We shall therefore pursue two different approaches. We shall investigate whether there might nevertheless exist special solutions for the string effective potential such that the duality symmetry will be preserved for all thermodynamic quantities. Imposing thermal duality covariance, we derive unique functional forms for the temperature-dependence of the string effective potentials.The second approach is to investigate self-consistent modifications to the rules of ordinary thermodynamics such that thermal duality is preserved. After all, methods of calculation should not break fundamental symmetries. We therefore propose a modification of the traditional definitions of these quantities, yielding a manifestly duality-covariant thermodynamics. At low temperatures, these modifications produce "corrections" to the standard definitions of entropy and specific heat which are suppressed by powers of the string scale. These corrections may nevertheless be important for the full development of a consistent string thermodynamics.One can also investigate the limitations of this geometric interpretation of temperature. Until recently, it appeared as though the temperature/geometry equivalence held in all string theories, but it appears to be broken for the heterotic string. We shall show this breaking by considering the SO(32) heterotic string in ten dimensions.The breaking of the geometric/finite temperature correspondence in the context of the heterotic string, leads to two different philosophical approaches when examining string systems at finite temperature. One approach is to discard the geometrical interpretation of temperature and ignore the string consistency conditions to follow the standard rules of statistical mechanics. This approach does not seem to lead to self-consistent string models. The second approach is to take the string consistency conditions as fundamental and explore their implications for systems at finite temperature. We shall examine some of the consequences of this approach.
机译:在量子场论中,可以将有限温度下的系统等效地视为具有压缩尺寸。这种情况延续到弦理论中,并导致热对偶性,将温度T下的闭合弦物理与反温度1 / T下的物理联系起来。不幸的是,在热对偶对称性下,诸如熵和比热之类的热力学量的经典定义并不是不变的。因此,我们将采取两种不同的方法。我们将研究是否仍然存在针对弦有效电势的特殊解决方案,以使对所有热力学量都保持对偶对称性。通过施加热对偶协方差,我们得出了串有效电位的温度依赖性的独特函数形式。第二种方法是研究对常规热力学规则的自洽修改,从而保留热对偶。毕竟,计算方法不应破坏基本对称性。因此,我们提出对这些量的传统定义的修改,以产生明显的对偶协变热力学。在低温下,这些修改会产生对熵和比热的标准定义的“校正”,而这些校正会被弦刻度的幂所抑制。然而,这些校正对于全面开发一致的弦热力学可能很重要。还可以研究这种对温度的几何解释的局限性。直到最近,所有弦理论中似乎都具有温度/几何等价性,但对于杂散弦似乎已被打破。我们将通过在十个维度上考虑SO(32)杂散弦来显示这种断裂。在杂散弦的上下文中几何/有限温度对应的断裂导致在有限温度下检查弦系统时产生两种不同的哲学方法。一种方法是放弃温度的几何解释,而忽略弦的一致性条件,以遵循统计力学的标准规则。这种方法似乎不会导致自洽的字符串模型。第二种方法是将字符串一致性条件作为基本条件,并探索它们在有限温度下对系统的影响。我们将研究这种方法的一些后果。

著录项

  • 作者

    Lennek Michael;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号