首页> 外文会议>Neural and Stochastic Methods in Image and Signal Processing >Statistical approaches to the tomographic reconstruction of finitely parameterized geometric objects
【24h】

Statistical approaches to the tomographic reconstruction of finitely parameterized geometric objects

机译:有限参数化几何对象的层析成像重建的统计方法

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Tomographic reconstruction in two dimensions isconcerned with the reconstruction of a positive,bounded function f(x, y) and its compact domain ofsupport approximately icron from noisy and possiblysparse samples of its radon- transform projections,g(t, approximately icron@). If the pair (f,approximately icron@) is referred to as an object, afinitely parameterized object is one in which both f(x,y) and approximately icron are determined uniquely by afinite number of parameters. For instance, a binaryN-sided polygonal object in the plane is uniquelyspecified by exactly 2N parameters which may be thevertices, normals to the sides, etc. In this work westudy the optimal reconstruction of finitelyparameterized objects from noisy projections. Inspecific, we focus our study on the optimalreconstruction of binary polygonal objects from noisyprojections. We show that when the projections arecorrupted by Gaussian white noise, the optimal maximumlikelihood (ML) solution to the reconstruction problemis the solution to a nonlinear optimization problem.This optimization problem is formulated over aparameter space which is a finite dimensional Euclideanspace. We also demonstrate that in general, the momentsof an object can be estimated directly from theprojection data and that using these estimated moments,a good initial guess for the numerical solution to thenonlinear optimization problem may be constructed.Finally, we study the performance of the proposedalgorithms from both statistical and computationalviewpoints. !11
机译:摘要:二维断层图像重建与正有界函数f(x,y)的重建及其紧凑的支持域有关,该区域由其ra变换投影的噪声样本(可能为稀疏样本)g(t,近似icron @) 。如果将该对(f,大约为icron @)称为对象,则无限参数化的对象是其中f(x,y)和大约icron由有限数量的参数唯一确定的对象。例如,平面中一个二元N边的多边形对象是由恰好2N个参数唯一指定的,这些参数可以是顶点,侧面的法线等。在这项工作中,我们从噪声投影出发,对有限参数化对象的最佳重构进行了研究。特别地,我们将研究重点放在从噪声投影对二进制多边形对象的最佳重构上。我们证明,当投影受到高斯白噪声的破坏时,重构问题的最佳最大似然(ML)解决方案是非线性优化问题的解决方案。此优化问题是在参数空间(有限维欧几里德空间)上提出的。我们还证明,一般而言,可以从投影数据直接估计对象的矩,并使用这些估计的矩,可以为非线性优化问题的数值解建立良好的初步猜测。最后,我们研究了所提出算法的性能从统计和计算角度来看。 !11

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号