首页> 外文OA文献 >The role of sediment in determining the geometry of alluvial stream channels
【2h】

The role of sediment in determining the geometry of alluvial stream channels

机译:沉积物在确定冲积河道几何形状中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data compiled from standardized procedures for width measurement at established streamflow gaging stations were used to develop a power-function relation between width in feet (W(A)_), and mean discharge in acre-feet per year (Q), for high-gradient perennial streams. Highgradient channels, which generally exhibit low variability for most factors influencing the width-discharge relation, were selected to indicate a standard exponent in the power-function equation. Flume data supported extrapolation of the high-gradient relation, Q = a w(A)¹•⁹⁸, through five orders of discharge magnitude. Further support for a standard exponent of the regression equation was provided by data from Kansas streams that had very silty beds and similar gradients, climate, and vegetation. Regression analysis of data from these streams gave an exponent of 2.01. Hence, a constant exponent of 2.0 was used for the width-discharge relation of all streams. To account for the effect of sediment on channel geometry, silt-clay percentages of the bed and bank material of 98 perennial streams of the western and midwestern United States were introduced into the standard width-discharge relation. Bed and bank cohesiveness, as indicated by silt-clay content, is considered a measure of channel competence. Narrowest streams for a specific mean discharge occur where channel competence, due to fine material and other variables including channel armoring and lush riparian vegetation, is greatest. Thus, at constant discharge, stream width varies inversely with both bed and bank silt-clay content. Multiple-regression analysis yielded the equation: Q = 2.0 w(A)²•⁰ (SC(bd))⁰•²² (SC(bk))⁰•⁵⁷ where SC(bd) and SC(bk) are percent silt-clay of bed and bank material, respectively. The average standard error of estimate for the relation is 58 percent, much of which is inferred to result from excessive width caused by bank erosion of historically recent flood events. Other causes of deviation from the relation include errors associated with the collection and analysis of data, climate and riparian vegetation, discharge variability, and armoring by coarse sediment sizes. Studies showing that stream channels are widened during periods of flooding suggest that most streams subsequently narrow toward an equilibrium width at normal discharges. Assuming that about one-sixth of the data sets, those exceeding one standard deviation, indicate streams too narrow owing to unrepresentative data or recently deficient runoff, the multiple-regression equation was modified to define channel equilibrium. For known conditions of mean discharge and sediment characteristics, an equilibrium width, W(eq) , can be calculated. Comparison with the measured width, W(A), defines the instability ratio, W(A)/W(eq) , The instability ratio identifies the degree to which channel width varies from assumed equilibrium, and ranges from 1.0 to 1.5 for most perennial streams. The ratio of suspended load to bed load appears to be a principal determinant of channel morphology, whereas sediment yield affects the rapidity with which channel healing can occur after widening by flooding. Greatest channel instabilities generally occur in sandchannel streams of arid to semiarid areas. In humid areas, lush vegetation, which encourages accretion of fine sediment sizes to bank material, induces channel stability. Low discharge variability, as shown by springs and regulated streams, generally results in low values of instability. Utility of the multiple-regression equation includes estimation of discharge from ungaged basins, and prediction of short-term changes in channel morphology resulting from altered supplies of water or sediment. Isolation of the influence of sediment on the width-discharge relation also permits consideration of the effects of other variables on channel shape.
机译:在高流量的情况下,根据已建立的流量测量站的宽度测量的标准化程序收集的数据,可以建立英尺宽度(W(A)_)与平均英亩英尺/年(Q)的平均排放量之间的幂函数关系。梯度多年生溪流。选择高梯度通道,这些通道通常在影响宽度-放电关系的大多数因素中表现出较低的可变性,以表示幂函数方程式中的标准指数。水槽数据支持通过五个数量级的放电幅度外推高梯度关系Q = a w(A)¹•⁹⁸。来自堪萨斯河的数据提供了进一步支持回归方程式的标准指数,这些数据具有粉质床和相似的坡度,气候和植被。来自这些流的数据的回归分析给出了2.01的指数。因此,对于所有流的宽度-排放关系,使用常数指数2.0。为了考虑沉积物对河道几何形状的影响,将美国西部和中西部98条多年生河流的床层和河岸物质的淤泥粘土百分比引入标准宽度-流量关系中。如粉砂粘土含量所示,河床和河岸的粘结性被认为是衡量河道能力的指标。对于特定的平均流量,最窄的水流发生在河道能力最强的地方,这是由于精细物质和其他变量(包括河道装甲和茂密的河岸植被)造成的。因此,在恒定流量下,河床宽度与床层和河床淤泥粘土含量成反比。多元回归分析得出方程:Q = 2.0 w(A)²•⁰(SC(bd))⁰•²²(SC(bk))⁰•⁵⁷其中SC(bd)和SC(bk)为粉砂百分数-床和河岸材料的粘土。该关系的估计平均标准误为58%,其中大部分是由历史上最近洪水事件的堤岸侵蚀所引起的过宽导致的。导致这种关系偏离的其他原因包括与数据的收集和分析,气候和河岸植被,流量变化以及粗沙量造成的装甲有关的误差。研究表明,河道在洪水期间变宽,表明大多数河道随后在正常排放时向平衡宽度方向变窄。假设大约六分之一的数据集(超过一个标准偏差的数据集)表示由于无代表性的数据或最近的径流不足而导致流太窄,则对多元回归方程进行了修改以定义通道平衡。对于平均流量和沉积物特征的已知条件,可以计算出平衡宽度W(eq)。与测得的宽度W(A)的比较定义了不稳定性比W(A)/ W(eq),不稳定性比表示通道宽度从假定的平衡变化的程度,对于大多数多年生植物,其范围从1.0到1.5流。悬吊荷载与床荷载的比似乎是决定河道形态的主要决定因素,而沉积物的产量会影响洪水泛滥后河道愈合的速度。最大的河道不稳定性通常发生在干旱至半干旱地区的沙河道中。在潮湿的地区,茂密的植被会促使堆积细小的沉积物堆积在河岸上,从而引起河道的稳定性。如弹簧和调节流所示,较低的排放变化通常会导致较低的不稳定值。多元回归方程的效用包括估算未处理盆地的流量,以及预测由于水或沉积物供应量变化而引起的河道形态短期变化。隔离沉积物对宽度-流量关系的影响也可以考虑其他变量对通道形状的影响。

著录项

  • 作者

    Osterkamp W. R.;

  • 作者单位
  • 年度 1976
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号