首页> 外文OA文献 >Fuzzy adaptive recurrent counterpropagation neural networks: A neural network architecture for qualitative modeling and real-time simulation of dynamic processes.
【2h】

Fuzzy adaptive recurrent counterpropagation neural networks: A neural network architecture for qualitative modeling and real-time simulation of dynamic processes.

机译:模糊自适应递归反向传播神经网络:用于动态过程的定性建模和实时仿真的神经网络体系结构。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation, a new artificial neural network (ANN) architecture called fuzzy adaptive recurrent counterpropagation neural network (FARCNN) is presented. FARCNNs can be directly synthesized from a set of training data, making system behavioral learning extremely fast. FARCNNs can be applied directly and effectively to model both static and dynamic system behavior based on observed input/output behavioral patterns alone without need of knowing anything about the internal structure of the system under study. The FARCNN architecture is derived from the methodology of fuzzy inductive reasoning and a basic form of counterpropagation neural networks (CNNs) for efficient implementation of finite state machines. Analog signals are converted to fuzzy signals by use of a new type of fuzzy A/D converter, thereby keeping the size of the Kohonen layer of the CNN manageably small. Fuzzy inferencing is accomplished by an application-independent feedforward network trained by means of backpropagation. Global feedback is used to represent full system dynamics. The FARCNN architecture combines the advantages of the quantitative approach (neural network) with that of the qualitative approach (fuzzy logic) as an efficient autonomous system modeling methodology. It also makes the simulation of mixed quantitative and qualitative models more feasible. In simulation experiments, we shall show that FARCNNs can be applied directly and easily to different types of systems, including static continuous nonlinear systems, discrete sequential systems, and as part of large dynamic continuous nonlinear control systems, embedding the FARCNN into much larger industry-sized quantitative models, even permitting a feedback structure to be placed around the FARCNN.
机译:本文提出了一种新的人工神经网络(ANN)架构,称为模糊自适应递归反向传播神经网络(FARCNN)。 FARCNN可以直接从一组训练数据中合成,从而使系统行为学习变得非常快。 FARCNN可以直接有效地用于仅基于观察到的输入/输出行为模式对静态和动态系统行为进行建模,而无需了解有关所研究系统的内部结构的任何信息。 FARCNN体系结构是从模糊归纳推理方法和反传播神经网络(CNN)的基本形式派生而来的,用于高效实现有限状态机。使用新型的模糊A / D转换器将模拟信号转换为模糊信号,从而使CNN的Kohonen层的尺寸可控地较小。模糊推理是通过反向传播训练的,独立于应用程序的前馈网络来完成的。全局反馈用于表示完整的系统动态。 FARCNN体系结构将定量方法(神经网络)的优点与定性方法(模糊逻辑)的优点相结合,是一种有效的自治系统建模方法。这也使混合的定量和定性模型的模拟更加可行。在仿真实验中,我们将证明FARCNN可以直接轻松地应用于不同类型的系统,包括静态连续非线性系统,离散顺序系统,以及作为大型动态连续非线性控制系统的一部分,将FARCNN嵌入到更大的行业中,大小的量化模型,甚至允许在FARCNN周围放置反馈结构。

著录项

  • 作者

    Pan YaDung.;

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号